Graph-encoded map

Last updated
A graph-encoded map (gray triangles and colored edges) of a graph in the plane (white circles and black edges) Graph-encoded map.svg
A graph-encoded map (gray triangles and colored edges) of a graph in the plane (white circles and black edges)

In topological graph theory, a graph-encoded map or gem is a method of encoding a cellular embedding of a graph using a different graph with four vertices per edge of the original graph. [1] It is the topological analogue of runcination, a geometric operation on polyhedra. Graph-encoded maps were formulated and named by Lins (1982). [2] Alternative and equivalent systems for representing cellular embeddings include signed rotation systems and ribbon graphs.

The graph-encoded map for an embedded graph is another cubic graph together with a 3-edge-coloring of . Each edge of is expanded into exactly four vertices in , one for each choice of a side and endpoint of the edge. An edge in connects each such vertex to the vertex representing the opposite side and same endpoint of ; these edges are by convention colored red. Another edge in connects each vertex to the vertex representing the opposite endpoint and same side of ; these edges are by convention colored blue. An edge in of the third color, yellow, connects each vertex to the vertex representing another edge that meets at the same side and endpoint. [1]

An alternative description of is that it has a vertex for each flag of (a mutually incident triple of a vertex, edge, and face). If is a flag, then there is exactly one vertex , edge , and face such that , , and are also flags. The three colors of edges in represent each of these three types of flags that differ by one of their three elements. However, interpreting a graph-encoded map in this way requires more care. When the same face appears on both sides of an edge, as can happen for instance for a planar embedding of a tree, the two sides give rise to different gem vertices. And when the same vertex appears at both endpoints of a self-loop, the two ends of the edge again give rise to different gem vertices. In this way, each triple may be associated with up to four different vertices of the gem. [1]

Whenever a cubic graph can be 3-edge-colored so that the red-blue cycles of the coloring all have length four, the colored graph can be interpreted as a graph-encoded map, and represents an embedding of another graph . To recover and its embedding, interpret each 2-colored cycle of as the face of an embedding of onto a surface, contract each red--yellow cycle into a single vertex of , and replace each pair of parallel blue edges left by the contraction with a single edge of . [1]

The dual graph of a graph-encoded map may be obtained from the map by recoloring it so that the red edges of the gem become blue and the blue edges become red. [3]

Related Research Articles

In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph or planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.

Bipartite graph Graph divided into two independent sets

In the mathematical field of graph theory, a bipartite graph is a graph whose vertices can be divided into two disjoint and independent sets and such that every edge connects a vertex in to one in . Vertex sets and are usually called the parts of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles.

In graph theory, a branch of mathematics, the (binary) cycle space of an undirected graph is the set of its even-degree subgraphs.

This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges.

In graph theory, two graphs and are homeomorphic if there is a graph isomorphism from some subdivision of to some subdivision of . If the edges of a graph are thought of as lines drawn from one vertex to another, then two graphs are homeomorphic to each other in the graph-theoretic sense precisely if they are homeomorphic in the topological sense.

In the mathematical discipline of graph theory, the line graph of an undirected graph G is another graph L(G) that represents the adjacencies between edges of G. L(G) is constructed in the following way: for each edge in G, make a vertex in L(G); for every two edges in G that have a vertex in common, make an edge between their corresponding vertices in L(G).

In graph theory, a branch of mathematics, list coloring is a type of graph coloring where each vertex can be restricted to a list of allowed colors. It was first studied in the 1970s in independent papers by Vizing and by Erdős, Rubin, and Taylor.

Abstract simplicial complex

In combinatorics, an abstract simplicial complex (ASC) is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely combinatorial description of the geometric notion of a simplicial complex. For example, in a 2-dimensional simplicial complex, the sets in the family are the triangles, their edges, and their vertices.

Cubic graph

In the mathematical field of graph theory, a cubic graph is a graph in which all vertices have degree three. In other words, a cubic graph is a 3-regular graph. Cubic graphs are also called trivalent graphs.

Five color theorem

The five color theorem is a result from graph theory that given a plane separated into regions, such as a political map of the countries of a state, the regions may be colored using no more than five colors in such a way that no two adjacent regions receive the same color.

Dual graph Graph representing faces of another graph

In the mathematical discipline of graph theory, the dual graph of a plane graph G is a graph that has a vertex for each face of G. The dual graph has an edge for each pair of faces in G that are separated from each other by an edge, and a self-loop when the same face appears on both sides of an edge. Thus, each edge e of G has a corresponding dual edge, whose endpoints are the dual vertices corresponding to the faces on either side of e. The definition of the dual depends on the choice of embedding of the graph G, so it is a property of plane graphs rather than planar graphs. For planar graphs generally, there may be multiple dual graphs, depending on the choice of planar embedding of the graph.

In combinatorial mathematics, rotation systems encode embeddings of graphs onto orientable surfaces by describing the circular ordering of a graph's edges around each vertex. A more formal definition of a rotation system involves pairs of permutations; such a pair is sufficient to determine a multigraph, a surface, and a 2-cell embedding of the multigraph onto the surface.

Edge contraction

In graph theory, an edge contraction is an operation that removes an edge from a graph while simultaneously merging the two vertices that it previously joined. Edge contraction is a fundamental operation in the theory of graph minors. Vertex identification is a less restrictive form of this operation.

Kőnigs theorem (graph theory) Theorem showing that maximum matching and minimum vertex cover are equivalent for bipartite graphs

In the mathematical area of graph theory, Kőnig's theorem, proved by Dénes Kőnig (1931), describes an equivalence between the maximum matching problem and the minimum vertex cover problem in bipartite graphs. It was discovered independently, also in 1931, by Jenő Egerváry in the more general case of weighted graphs.

Graph embedding Embedding a graph in a topological space, often Euclidean

In topological graph theory, an embedding of a graph on a surface is a representation of on in which points of are associated with vertices and simple arcs are associated with edges in such a way that:

The discharging method is a technique used to prove lemmas in structural graph theory. Discharging is most well known for its central role in the proof of the four color theorem. The discharging method is used to prove that every graph in a certain class contains some subgraph from a specified list. The presence of the desired subgraph is then often used to prove a coloring result.

Clique complex

Clique complexes, flag complexes, and conformal hypergraphs are closely related mathematical objects in graph theory and geometric topology that each describe the cliques of an undirected graph.

In the mathematical discipline of graph theory, a graph C is a covering graph of another graph G if there is a covering map from the vertex set of C to the vertex set of G. A covering map f is a surjection and a local isomorphism: the neighbourhood of a vertex v in C is mapped bijectively onto the neighbourhood of f(v) in G.

Regular map (graph theory) Symmetric tessellation of a closed surface

In mathematics, a regular map is a symmetric tessellation of a closed surface. More precisely, a regular map is a decomposition of a two-dimensional manifold into topological disks such that every flag can be transformed into any other flag by a symmetry of the decomposition. Regular maps are, in a sense, topological generalizations of Platonic solids. The theory of maps and their classification is related to the theory of Riemann surfaces, hyperbolic geometry, and Galois theory. Regular maps are classified according to either: the genus and orientability of the supporting surface, the underlying graph, or the automorphism group.

Nauru graph

In the mathematical field of graph theory, the Nauru graph is a symmetric bipartite cubic graph with 24 vertices and 36 edges. It was named by David Eppstein after the twelve-pointed star in the flag of Nauru.

References

  1. 1 2 3 4 Bonnington, C. Paul; Little, Charles H. C. (1995), The foundations of topological graph theory, New York: Springer-Verlag, p. 31, doi:10.1007/978-1-4612-2540-9, ISBN   0-387-94557-1, MR   1367285
  2. Lins, Sóstenes (1982), "Graph-encoded maps", Journal of Combinatorial Theory, Series B, 32 (2): 171–181, doi: 10.1016/0095-8956(82)90033-8 , MR   0657686
  3. Bonnington & Little (1995), pp. 111–112.