In topological graph theory, a ribbon graph is a way to represent graph embeddings, equivalent in power to signed rotation systems or graph-encoded maps. [1] It is convenient for visualizations of embeddings, because it can represent unoriented surfaces without self-intersections (unlike embeddings of the whole surface into three-dimensional Euclidean space) and because it omits the parts of the surface that are far away from the graph, allowing holes through which the rest of the embedding can be seen. Ribbon graphs are also called fat graphs. [2]
In a ribbon graph representation, each vertex of a graph is represented by a topological disk, and each edge is represented by a topological rectangle with two opposite ends glued to the edges of vertex disks (possibly to the same disk as each other). [3]
A ribbon graph representation may be obtained from an embedding of a graph onto a surface (and a metric on the surface) by choosing a sufficiently small number , and representing each vertex and edge by their -neighborhoods in the surface. [1] [4] For small values of , the edge rectangles become long and thin like ribbons, giving the name to the representation.
In the other direction, from a ribbon graph one may find the faces of its corresponding embedding as the components of the boundary of the topological surface formed by the ribbon graph. One may recover the surface itself by gluing a topological disk to the ribbon graph along each boundary component. The partition of the surface into vertex disks, edge disks, and face disks given by the ribbon graph and this gluing process is a different but related representation of the embedding called a band decomposition. [5] The surface onto which the graph is embedded may be determined by whether it is orientable (true if any cycle in the graph has an even number of twists) and by its Euler characteristic.
The embeddings that can be represented by ribbon graphs are the ones in which a graph is embedded onto a 2-manifold (without boundary) and in which each face of the embedding is a topological disk. [1]
Two ribbon graph representations are said to be equivalent (and define homeomorphic graph embeddings) if they are related to each other that a homeomorphism of the topological space formed by the union of the vertex disks and edge rectangles that preserves the identification of these features. [3] Ribbon graph representations may be equivalent even if it is not possible to deform one into the other within 3d space: this notion of equivalence considers only the intrinsic topology of the representation, and not how it is embedded.
However, ribbon graphs are also applied in knot theory, [4] and in this application weaker notions of equivalence that take into account the 3d embedding may also be used.
In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph or planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.
In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solid figures; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right. However, surfaces can also be defined abstractly, without reference to any ambient space. For example, the Klein bottle is a surface that cannot be embedded in three-dimensional Euclidean space.
In mathematics, a Möbius strip, Möbius band, or Möbius loop is a surface that can be formed by attaching the ends of a strip of paper together with a half-twist. As a mathematical object, it was discovered by Johann Benedict Listing and August Ferdinand Möbius in 1858, but it had already appeared in Roman mosaics from the third century CE. The Möbius strip is a non-orientable surface, meaning that within it one cannot consistently distinguish clockwise from counterclockwise turns. Every non-orientable surface contains a Möbius strip.
In topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest knot being a ring. In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, . Two mathematical knots are equivalent if one can be transformed into the other via a deformation of upon itself ; these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing it through itself.
In graph theory, a component of an undirected graph is a connected subgraph that is not part of any larger connected subgraph. The components of any graph partition its vertices into disjoint sets, and are the induced subgraphs of those sets. A graph that is itself connected has exactly one component, consisting of the whole graph. Components are sometimes called connected components.
This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges.
In mathematics, a knot is an embedding of the circle S1 into three-dimensional Euclidean space, R3. Often two knots are considered equivalent if they are ambient isotopic, that is, if there exists a continuous deformation of R3 which takes one knot to the other.
In mathematics, the real projective plane is an example of a compact non-orientable two-dimensional manifold; in other words, a one-sided surface. It cannot be embedded in standard three-dimensional space without intersecting itself. It has basic applications to geometry, since the common construction of the real projective plane is as the space of lines in passing through the origin.
In topological graph theory, a mathematical discipline, a linkless embedding of an undirected graph is an embedding of the graph into three-dimensional Euclidean space in such a way that no two cycles of the graph are linked. A flat embedding is an embedding with the property that every cycle is the boundary of a topological disk whose interior is disjoint from the graph. A linklessly embeddable graph is a graph that has a linkless or flat embedding; these graphs form a three-dimensional analogue of the planar graphs. Complementarily, an intrinsically linked graph is a graph that does not have a linkless embedding.
In mathematics, a dessin d'enfant is a type of graph embedding used to study Riemann surfaces and to provide combinatorial invariants for the action of the absolute Galois group of the rational numbers. The name of these embeddings is French for a "child's drawing"; its plural is either dessins d'enfant, "child's drawings", or dessins d'enfants, "children's drawings".
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space.
In combinatorial mathematics, rotation systems encode embeddings of graphs onto orientable surfaces by describing the circular ordering of a graph's edges around each vertex. A more formal definition of a rotation system involves pairs of permutations; such a pair is sufficient to determine a multigraph, a surface, and a 2-cell embedding of the multigraph onto the surface.
A slice knot is a mathematical knot in 3-dimensional space that bounds an embedded disk in 4-dimensional space.
In topological graph theory, an embedding of a graph on a surface is a representation of on in which points of are associated with vertices and simple arcs are associated with edges in such a way that:
The circle packing theorem describes the possible tangency relations between circles in the plane whose interiors are disjoint. A circle packing is a connected collection of circles whose interiors are disjoint. The intersection graph of a circle packing is the graph having a vertex for each circle, and an edge for every pair of circles that are tangent. If the circle packing is on the plane, or, equivalently, on the sphere, then its intersection graph is called a coin graph; more generally, intersection graphs of interior-disjoint geometric objects are called tangency graphs or contact graphs. Coin graphs are always connected, simple, and planar. The circle packing theorem states that these are the only requirements for a graph to be a coin graph:
In mathematics, a regular map is a symmetric tessellation of a closed surface. More precisely, a regular map is a decomposition of a two-dimensional manifold into topological disks such that every flag can be transformed into any other flag by a symmetry of the decomposition. Regular maps are, in a sense, topological generalizations of Platonic solids. The theory of maps and their classification is related to the theory of Riemann surfaces, hyperbolic geometry, and Galois theory. Regular maps are classified according to either: the genus and orientability of the supporting surface, the underlying graph, or the automorphism group.
In the mathematical field of low-dimensional topology, a clasper is a surface in a 3-manifold on which surgery can be performed.
In topological graph theory, the Wilson operations are a group of six transformations on graph embeddings. They are generated by two involutions on embeddings, surface duality and Petrie duality, and have the group structure of the symmetric group on three elements. They are named for Stephen E. Wilson, who published them for regular maps in 1979; they were extended to all cellular graph embeddings by Lins (1982).
In mathematics, a bouquet graph, for an integer parameter , is an undirected graph with one vertex and edges, all of which are self-loops. It is the graph-theoretic analogue of the topological bouquet, a space of circles joined at a point. When the context of graph theory is clear, it can be called more simply a bouquet.
In topological graph theory, a graph-encoded map or gem is a method of encoding a cellular embedding of a graph using a different graph with four vertices per edge of the original graph. It is the topological analogue of runcination, a geometric operation on polyhedra. Graph-encoded maps were formulated and named by Lins (1982). Alternative and equivalent systems for representing cellular embeddings include signed rotation systems and ribbon graphs.