Edge contraction

Last updated
Contracting the edge between the indicated vertices, resulting in graph G / {uv}. Edge contraction with multiple edges.svg
Contracting the edge between the indicated vertices, resulting in graph G / {uv}.

In graph theory, an edge contraction is an operation that removes an edge from a graph while simultaneously merging the two vertices that it previously joined. Edge contraction is a fundamental operation in the theory of graph minors. Vertex identification is a less restrictive form of this operation.

Contents

Definition

The edge contraction operation occurs relative to a particular edge, . The edge is removed and its two incident vertices, and , are merged into a new vertex , where the edges incident to each correspond to an edge incident to either or . More generally, the operation may be performed on a set of edges by contracting each edge (in any order). [1]

The resulting graph is sometimes written as . (Contrast this with , which means removing the edge .)

Contracting an edge without creating multiple edges. Edge contraction.svg
Contracting an edge without creating multiple edges.

As defined below, an edge contraction operation may result in a graph with multiple edges even if the original graph was a simple graph. [2] However, some authors [3] disallow the creation of multiple edges, so that edge contractions performed on simple graphs always produce simple graphs.

Formal definition

Let be a graph (or directed graph ) containing an edge with . Let be a function that maps every vertex in to itself, and otherwise, maps it to a new vertex . The contraction of results in a new graph , where , , and for every , is incident to an edge if and only if, the corresponding edge, is incident to in .

Vertex identification

Vertex identification (sometimes called vertex contraction) removes the restriction that the contraction must occur over vertices sharing an incident edge. (Thus, edge contraction is a special case of vertex identification.) The operation may occur on any pair (or subset) of vertices in the graph. Edges between two contracting vertices are sometimes removed. If and are vertices of distinct components of , then we can create a new graph by identifying and in as a new vertex in . [4] More generally, given a partition of the vertex set, one can identify vertices in the partition; the resulting graph is known as a quotient graph.

Vertex cleaving

Vertex cleaving, which is the same as vertex splitting, means one vertex is being split into two, where these two new vertices are adjacent to the vertices that the original vertex was adjacent to. This is a reverse operation of vertex identification, although in general for vertex identification, adjacent vertices of the two identified vertices are not the same set.

Path contraction

Path contraction occurs upon the set of edges in a path that contract to form a single edge between the endpoints of the path. Edges incident to vertices along the path are either eliminated, or arbitrarily (or systematically) connected to one of the endpoints.

Twisting

Consider two disjoint graphs and , where contains vertices and and contains vertices and . Suppose we can obtain the graph by identifying the vertices of and of as the vertex of and identifying the vertices of and of as the vertex of . In a twisting of with respect to the vertex set , we identify, instead, with and with . [5]

Applications

Both edge and vertex contraction techniques are valuable in proof by induction on the number of vertices or edges in a graph, where it can be assumed that a property holds for all smaller graphs and this can be used to prove the property for the larger graph.

Edge contraction is used in the recursive formula for the number of spanning trees of an arbitrary connected graph, [6] and in the recurrence formula for the chromatic polynomial of a simple graph. [7]

Contractions are also useful in structures where we wish to simplify a graph by identifying vertices that represent essentially equivalent entities. One of the most common examples is the reduction of a general directed graph to an acyclic directed graph by contracting all of the vertices in each strongly connected component. If the relation described by the graph is transitive, no information is lost as long as we label each vertex with the set of labels of the vertices that were contracted to form it.

Another example is the coalescing performed in global graph coloring register allocation, where vertices are contracted (where it is safe) in order to eliminate move operations between distinct variables.

Edge contraction is used in 3D modelling packages (either manually, or through some feature of the modelling software) to consistently reduce vertex count, aiding in the creation of low-polygon models.

See also

Notes

  1. Gross & Yellen 1998 , p. 264
  2. Also, loops may arise when the graph started with multiple edges or, even if the graph was simple, from the repeated application of edge contraction.
  3. Rosen 2011 , p. 664
  4. Oxley 2006 , pp.  147–8 §5.3 Whitney's 2-Isomorphism Theorem
  5. Oxley 2006 , p.  148
  6. Gross & Yellen 1998 , p. 264
  7. West 2001 , p. 221

Related Research Articles

In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph.

This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges.

<span class="mw-page-title-main">Graph (discrete mathematics)</span> Vertices connected in pairs by edges

In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called vertices and each of the related pairs of vertices is called an edge. Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges. Graphs are one of the objects of study in discrete mathematics.

In graph theory, two graphs and are homeomorphic if there is a graph isomorphism from some subdivision of to some subdivision of . If the edges of a graph are thought of as lines drawn from one vertex to another, then two graphs are homeomorphic to each other in the graph-theoretic sense precisely if they are homeomorphic in the topological sense.

In graph theory, an undirected graph H is called a minor of the graph G if H can be formed from G by deleting edges, vertices and by contracting edges.

In mathematics, an incidence matrix is a logical matrix that shows the relationship between two classes of objects, usually called an incidence relation. If the first class is X and the second is Y, the matrix has one row for each element of X and one column for each element of Y. The entry in row x and column y is 1 if x and y are related and 0 if they are not. There are variations; see below.

<span class="mw-page-title-main">Graph coloring</span> Methodic assignment of colors to elements of a graph

In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color.

<span class="mw-page-title-main">Spanning tree</span> Tree which includes all vertices of a graph

In the mathematical field of graph theory, a spanning treeT of an undirected graph G is a subgraph that is a tree which includes all of the vertices of G. In general, a graph may have several spanning trees, but a graph that is not connected will not contain a spanning tree. If all of the edges of G are also edges of a spanning tree T of G, then G is a tree and is identical to T.

<span class="mw-page-title-main">Connectivity (graph theory)</span> Basic concept of graph theory

In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements that need to be removed to separate the remaining nodes into two or more isolated subgraphs. It is closely related to the theory of network flow problems. The connectivity of a graph is an important measure of its resilience as a network.

In graph theory, reachability refers to the ability to get from one vertex to another within a graph. A vertex can reach a vertex if there exists a sequence of adjacent vertices which starts with and ends with .

In graph theory, a connected graph is k-edge-connected if it remains connected whenever fewer than k edges are removed.

<span class="mw-page-title-main">Kőnig's theorem (graph theory)</span> Theorem showing that maximum matching and minimum vertex cover are equivalent for bipartite graphs

In the mathematical area of graph theory, Kőnig's theorem, proved by Dénes Kőnig, describes an equivalence between the maximum matching problem and the minimum vertex cover problem in bipartite graphs. It was discovered independently, also in 1931, by Jenő Egerváry in the more general case of weighted graphs.

<span class="mw-page-title-main">Karger's algorithm</span> Randomized algorithm for minimum cuts

In computer science and graph theory, Karger's algorithm is a randomized algorithm to compute a minimum cut of a connected graph. It was invented by David Karger and first published in 1993.

In combinatorial optimization, the Gomory–Hu tree of an undirected graph with capacities is a weighted tree that represents the minimum s-t cuts for all s-t pairs in the graph. The Gomory–Hu tree can be constructed in |V| − 1 maximum flow computations. It is named for Ralph E. Gomory and T. C. Hu.

In graph theory, the blossom algorithm is an algorithm for constructing maximum matchings on graphs. The algorithm was developed by Jack Edmonds in 1961, and published in 1965. Given a general graph G = (V, E), the algorithm finds a matching M such that each vertex in V is incident with at most one edge in M and |M| is maximized. The matching is constructed by iteratively improving an initial empty matching along augmenting paths in the graph. Unlike bipartite matching, the key new idea is that an odd-length cycle in the graph (blossom) is contracted to a single vertex, with the search continuing iteratively in the contracted graph.

In matroid theory, a field within mathematics, a gammoid is a certain kind of matroid, describing sets of vertices that can be reached by vertex-disjoint paths in a directed graph.

In computer science, the method of contraction hierarchies is a speed-up technique for finding the shortest-path in a graph. The most intuitive applications are car-navigation systems: a user wants to drive from to using the quickest possible route. The metric optimized here is the travel time. Intersections are represented by vertices, the road sections connecting them by edges. The edge weights represent the time it takes to drive along this segment of the road. A path from to is a sequence of edges ; the shortest path is the one with the minimal sum of edge weights among all possible paths. The shortest path in a graph can be computed using Dijkstra's algorithm but, given that road networks consist of tens of millions of vertices, this is impractical. Contraction hierarchies is a speed-up method optimized to exploit properties of graphs representing road networks. The speed-up is achieved by creating shortcuts in a preprocessing phase which are then used during a shortest-path query to skip over "unimportant" vertices. This is based on the observation that road networks are highly hierarchical. Some intersections, for example highway junctions, are "more important" and higher up in the hierarchy than for example a junction leading into a dead end. Shortcuts can be used to save the precomputed distance between two important junctions such that the algorithm doesn't have to consider the full path between these junctions at query time. Contraction hierarchies do not know about which roads humans consider "important", but they are provided with the graph as input and are able to assign importance to vertices using heuristics.

<span class="mw-page-title-main">Ear decomposition</span> Partition of graph into sequence of paths

In graph theory, an ear of an undirected graph G is a path P where the two endpoints of the path may coincide, but where otherwise no repetition of edges or vertices is allowed, so every internal vertex of P has degree two in G. An ear decomposition of an undirected graph G is a partition of its set of edges into a sequence of ears, such that the one or two endpoints of each ear belong to earlier ears in the sequence and such that the internal vertices of each ear do not belong to any earlier ear. Additionally, in most cases the first ear in the sequence must be a cycle. An open ear decomposition or a proper ear decomposition is an ear decomposition in which the two endpoints of each ear after the first are distinct from each other.

In graph theory a minimum spanning tree (MST) of a graph with and is a tree subgraph of that contains all of its vertices and is of minimum weight.

A central problem in algorithmic graph theory is the shortest path problem. One of the generalizations of the shortest path problem is known as the single-source-shortest-paths (SSSP) problem, which consists of finding the shortest paths from a source vertex to all other vertices in the graph. There are classical sequential algorithms which solve this problem, such as Dijkstra's algorithm. In this article, however, we present two parallel algorithms solving this problem.

References