Integral graph

Last updated

In the mathematical field of graph theory, an integral graph is a graph whose adjacency matrix's spectrum consists entirely of integers. In other words, a graph is an integral graph if all of the roots of the characteristic polynomial of its adjacency matrix are integers. [1]

The notion was introduced in 1974 by Frank Harary and Allen Schwenk. [2]

Examples

Related Research Articles

<span class="mw-page-title-main">Petersen graph</span> Cubic graph with 10 vertices and 15 edges

In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring.

In mathematics, spectral graph theory is the study of the properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix.

In mathematics, a unimodular matrixM is a square integer matrix having determinant +1 or −1. Equivalently, it is an integer matrix that is invertible over the integers: there is an integer matrix N that is its inverse. Thus every equation Mx = b, where M and b both have integer components and M is unimodular, has an integer solution. The n × n unimodular matrices form a group called the n × n general linear group over , which is denoted .

In the mathematical discipline of graph theory, the line graph of an undirected graph G is another graph L(G) that represents the adjacencies between edges of G. L(G) is constructed in the following way: for each edge in G, make a vertex in L(G); for every two edges in G that have a vertex in common, make an edge between their corresponding vertices in L(G).

<span class="mw-page-title-main">Strongly regular graph</span> Regular graph where all linked node pairs have same degree, as do all unlinked node pairs

In graph theory, a strongly regular graph (SRG) is defined as follows. Let G = (V, E) be a regular graph with v vertices and degree k. G is said to be strongly regular if there are also integers λ and μ such that:

<span class="mw-page-title-main">Frank Harary</span> American mathematician

Frank Harary was an American mathematician, who specialized in graph theory. He was widely recognized as one of the "fathers" of modern graph theory. Harary was a master of clear exposition and, together with his many doctoral students, he standardized the terminology of graphs. He broadened the reach of this field to include physics, psychology, sociology, and even anthropology. Gifted with a keen sense of humor, Harary challenged and entertained audiences at all levels of mathematical sophistication. A particular trick he employed was to turn theorems into games—for instance, students would try to add red edges to a graph on six vertices in order to create a red triangle, while another group of students tried to add edges to create a blue triangle. Because of the theorem on friends and strangers, one team or the other would have to win.

<span class="mw-page-title-main">Signed graph</span> Graph with sign-labeled edges

In the area of graph theory in mathematics, a signed graph is a graph in which each edge has a positive or negative sign.

<span class="mw-page-title-main">Cartesian product of graphs</span> Operation in graph theory

In graph theory, the Cartesian productGH of graphs G and H is a graph such that:

<span class="mw-page-title-main">Tensor product of graphs</span> Operation in graph theory

In graph theory, the tensor productG × H of graphs G and H is a graph such that

<span class="mw-page-title-main">Unit distance graph</span> Geometric graph with unit edge lengths

In mathematics, particularly geometric graph theory, a unit distance graph is a graph formed from a collection of points in the Euclidean plane by connecting two points whenever the distance between them is exactly one. To distinguish these graphs from a broader definition that allows some non-adjacent pairs of vertices to be at distance one, they may also be called strict unit distance graphs or faithful unit distance graphs. As a hereditary family of graphs, they can be characterized by forbidden induced subgraphs. The unit distance graphs include the cactus graphs, the matchstick graphs and penny graphs, and the hypercube graphs. The generalized Petersen graphs are non-strict unit distance graphs.

<span class="mw-page-title-main">Rook's graph</span> Graph of chess rook moves

In graph theory, a rook's graph is an undirected graph that represents all legal moves of the rook chess piece on a chessboard. Each vertex of a rook's graph represents a square on a chessboard, and each edge connects two squares on the same row (rank) or on the same column (file) as each other, the squares that a rook can move between. These graphs can be constructed for chessboards of any rectangular shape, and can be defined mathematically as the Cartesian product of two complete graphs, as the two-dimensional Hamming graphs, or as the line graphs of complete bipartite graphs.

<span class="mw-page-title-main">Strong product of graphs</span> Binary operation in graph theory

In graph theory, the strong product is a way of combining two graphs to make a larger graph. Two vertices are adjacent in the strong product when they come from pairs of vertices in the factor graphs that are either adjacent or identical. The strong product is one of several different graph product operations that have been studied in graph theory. The strong product of any two graphs can be constructed as the union of two other products of the same two graphs, the Cartesian product of graphs and the tensor product of graphs.

In graph theory, the bipartite double cover of an undirected graph G is a bipartite, covering graph of G, with twice as many vertices as G. It can be constructed as the tensor product of graphs, G × K2. It is also called the Kronecker double cover, canonical double cover or simply the bipartite double of G.

<span class="mw-page-title-main">Clebsch graph</span> One of two different regular graphs with 16 vertices

In the mathematical field of graph theory, the Clebsch graph is either of two complementary graphs on 16 vertices, a 5-regular graph with 40 edges and a 10-regular graph with 80 edges. The 80-edge graph is the dimension-5 halved cube graph; it was called the Clebsch graph name by Seidel (1968) because of its relation to the configuration of 16 lines on the quartic surface discovered in 1868 by the German mathematician Alfred Clebsch. The 40-edge variant is the dimension-5 folded cube graph; it is also known as the Greenwood–Gleason graph after the work of Robert E. Greenwood and Andrew M. Gleason (1955), who used it to evaluate the Ramsey number R(3,3,3) = 17.

<span class="mw-page-title-main">Integral polytope</span> A convex polytope whose vertices all have integer Cartesian coordinates

In geometry and polyhedral combinatorics, an integral polytope is a convex polytope whose vertices all have integer Cartesian coordinates. That is, it is a polytope that equals the convex hull of its integer points. Integral polytopes are also called lattice polytopes or Z-polytopes. The special cases of two- and three-dimensional integral polytopes may be called polygons or polyhedra instead of polytopes, respectively.

In graph theory, a partial cube is a graph that is isometric to a subgraph of a hypercube. In other words, a partial cube can be identified with a subgraph of a hypercube in such a way that the distance between any two vertices in the partial cube is the same as the distance between those vertices in the hypercube. Equivalently, a partial cube is a graph whose vertices can be labeled with bit strings of equal length in such a way that the distance between two vertices in the graph is equal to the Hamming distance between their labels. Such a labeling is called a Hamming labeling; it represents an isometric embedding of the partial cube into a hypercube.

<span class="mw-page-title-main">Distinguishing coloring</span> Assignment of colors to graph vertices that destroys all symmetries

In graph theory, a distinguishing coloring or distinguishing labeling of a graph is an assignment of colors or labels to the vertices of the graph that destroys all of the nontrivial symmetries of the graph. The coloring does not need to be a proper coloring: adjacent vertices are allowed to be given the same color. For the colored graph, there should not exist any one-to-one mapping of the vertices to themselves that preserves both adjacency and coloring. The minimum number of colors in a distinguishing coloring is called the distinguishing number of the graph.

<span class="mw-page-title-main">Sudoku graph</span> Mathematical graph of a Sudoku

In the mathematics of Sudoku, the Sudoku graph is an undirected graph whose vertices represent the cells of a (blank) Sudoku puzzle and whose edges represent pairs of cells that belong to the same row, column, or block of the puzzle. The problem of solving a Sudoku puzzle can be represented as precoloring extension on this graph. It is an integral Cayley graph.

<span class="mw-page-title-main">Locally linear graph</span> Graph where every edge is in one triangle

In graph theory, a locally linear graph is an undirected graph in which every edge belongs to exactly one triangle. Equivalently, for each vertex of the graph, its neighbors are each adjacent to exactly one other neighbor, so the neighbors can be paired up into an induced matching. Locally linear graphs have also been called locally matched graphs.

<span class="mw-page-title-main">Berlekamp–Van Lint–Seidel graph</span>

In graph theory, the Berlekamp–Van Lint–Seidel graph is a locally linear strongly regular graph with parameters . This means that it has 243 vertices, 22 edges per vertex, exactly one shared neighbor per pair of adjacent vertices, and exactly two shared neighbors per pair of non-adjacent vertices. It was constructed by Elwyn Berlekamp, J. H. van Lint, and Johan Jacob Seidel as the coset graph of the ternary Golay code.

References

  1. Weisstein, Eric W., "Integral Graph", MathWorld
  2. 1 2 3 4 5 6 Harary, Frank; Schwenk, Allen J. (1974), "Which graphs have integral spectra?", in Bari, Ruth A.; Harary, Frank (eds.), Graphs and Combinatorics: Proceedings of the Capital Conference on Graph Theory and Combinatorics at the George Washington University, Washington, D.C., June 18–22, 1973, Lecture Notes in Mathematics, vol. 406, Springer, pp. 45–51, doi:10.1007/BFb0066434, MR   0387124
  3. Doob, Michael (1970), "On characterizing certain graphs with four eigenvalues by their spectra", Linear Algebra and its Applications , 3: 461–482, doi: 10.1016/0024-3795(70)90037-6 , MR   0285432
  4. Sander, Torsten (2009), "Sudoku graphs are integral", Electronic Journal of Combinatorics, 16 (1): Note 25, 7, MR   2529816