Sudoku graph

Last updated
4
x
4
{\displaystyle 4\times 4}
Sudoku graph 4x4 Sudoku graph.svg
Sudoku graph

In the mathematics of Sudoku, the Sudoku graph is an undirected graph whose vertices represent the cells of a (blank) Sudoku puzzle and whose edges represent pairs of cells that belong to the same row, column, or block of the puzzle. The problem of solving a Sudoku puzzle can be represented as precoloring extension on this graph. It is an integral Cayley graph.

Contents

Basic properties and examples

Counting neighbors of a cell on a
9
x
9
{\displaystyle 9\times 9}
Sudoku graph (
n
=
3
{\displaystyle n=3}
) 9x9 Sudoku graph neighbors (really fixed).svg
Counting neighbors of a cell on a Sudoku graph ()

On a Sudoku board of size , the Sudoku graph has vertices, each with exactly neighbors. Therefore, it is a regular graph. The total number of edges is . For instance, the graph shown in the figure above, for a board, has 16 vertices and 56 edges, and is 7-regular. For the most common form of Sudoku, on a board, the Sudoku graph is a 20-regular graph with 81 vertices and 810 edges. [1] [2] [3] The second figure shows how to count the neighbors of each cell in a board.

Puzzle solutions and graph coloring

Each row, column, or block of the Sudoku puzzle forms a clique in the Sudoku graph, whose size equals the number of symbols used to solve the puzzle. A graph coloring of the Sudoku graph using this number of colors (the minimum possible number of colors for this graph) can be interpreted as a solution to the puzzle. The usual form of a Sudoku puzzle, in which some cells are filled in with symbols and the rest must be filled in by the person solving the puzzle, corresponds to the precoloring extension problem on this graph. [1] [2] [3]

Algebraic properties

For any , the Sudoku graph of an Sudoku board is an integral graph, meaning that the spectrum of its adjacency matrix consists only of integers. More precisely, its spectrum consists of the eigenvalues [4]

It can be represented as a Cayley graph of the abelian group . [5]

The Sudoku graph contains as a subgraph the rook's graph, which is defined in the same way using only the rows and columns (but not the blocks) of the Sudoku board.

The 20-regular 81-vertex Sudoku graph should be distinguished from a different 20-regular graph on 81 vertices, the Brouwer–Haemers graph, which has smaller cliques (of size 3) and requires fewer colors (7 instead of 9). [6]

Related Research Articles

<span class="mw-page-title-main">Petersen graph</span> Cubic graph with 10 vertices and 15 edges

In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring.

<span class="mw-page-title-main">Cayley graph</span> Graph defined from a mathematical group

In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group, is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem, and uses a specified set of generators for the group. It is a central tool in combinatorial and geometric group theory. The structure and symmetry of Cayley graphs makes them particularly good candidates for constructing expander graphs.

<span class="mw-page-title-main">Strongly regular graph</span> Concept in graph theory

In graph theory, a strongly regular graph (SRG) is a regular graph G = (V, E) with v vertices and degree k such that for some given integers

<span class="mw-page-title-main">Mathematics of Sudoku</span> Mathematical investigation of Sudoku

Mathematics can be used to study Sudoku puzzles to answer questions such as "How many filled Sudoku grids are there?", "What is the minimal number of clues in a valid puzzle?" and "In what ways can Sudoku grids be symmetric?" through the use of combinatorics and group theory.

<span class="mw-page-title-main">Demihypercube</span> Polytope constructed from alternation of an hypercube

In geometry, demihypercubes (also called n-demicubes, n-hemicubes, and half measure polytopes) are a class of n-polytopes constructed from alternation of an n-hypercube, labeled as n for being half of the hypercube family, γn. Half of the vertices are deleted and new facets are formed. The 2n facets become 2n(n−1)-demicubes, and 2n(n−1)-simplex facets are formed in place of the deleted vertices.

<span class="mw-page-title-main">Unit distance graph</span> Geometric graph with unit edge lengths

In mathematics, particularly geometric graph theory, a unit distance graph is a graph formed from a collection of points in the Euclidean plane by connecting two points whenever the distance between them is exactly one. To distinguish these graphs from a broader definition that allows some non-adjacent pairs of vertices to be at distance one, they may also be called strict unit distance graphs or faithful unit distance graphs. As a hereditary family of graphs, they can be characterized by forbidden induced subgraphs. The unit distance graphs include the cactus graphs, the matchstick graphs and penny graphs, and the hypercube graphs. The generalized Petersen graphs are non-strict unit distance graphs.

<span class="mw-page-title-main">Rook's graph</span> Graph of chess rook moves

In graph theory, a rook's graph is an undirected graph that represents all legal moves of the rook chess piece on a chessboard. Each vertex of a rook's graph represents a square on a chessboard, and there is an edge between any two squares sharing a row (rank) or column (file), the squares that a rook can move between. These graphs can be constructed for chessboards of any rectangular shape. Although rook's graphs have only minor significance in chess lore, they are more important in the abstract mathematics of graphs through their alternative constructions: rook's graphs are the Cartesian product of two complete graphs, and are the line graphs of complete bipartite graphs. The square rook's graphs constitute the two-dimensional Hamming graphs.

<span class="mw-page-title-main">Foster graph</span> Bipartite 3-regular graph with 90 vertices and 135 edges

In the mathematical field of graph theory, the Foster graph is a bipartite 3-regular graph with 90 vertices and 135 edges.

<span class="mw-page-title-main">Power of three</span> Three raised to an integer power

In mathematics, a power of three is a number of the form 3n where n is an integer, that is, the result of exponentiation with number three as the base and integer n as the exponent.

<span class="mw-page-title-main">Odd graph</span> Family of symmetric graphs which generalize the Petersen graph

In the mathematical field of graph theory, the odd graphs are a family of symmetric graphs defined from certain set systems. They include and generalize the Petersen graph.

<span class="mw-page-title-main">Clebsch graph</span> One of two different regular graphs with 16 vertices

In the mathematical field of graph theory, the Clebsch graph is either of two complementary graphs on 16 vertices, a 5-regular graph with 40 edges and a 10-regular graph with 80 edges. The 80-edge graph is the dimension-5 halved cube graph; it was called the Clebsch graph name by Seidel (1968) because of its relation to the configuration of 16 lines on the quartic surface discovered in 1868 by the German mathematician Alfred Clebsch. The 40-edge variant is the dimension-5 folded cube graph; it is also known as the Greenwood–Gleason graph after the work of Robert E. Greenwood and Andrew M. Gleason (1955), who used it to evaluate the Ramsey number R(3,3,3) = 17.

<span class="mw-page-title-main">Friendship graph</span> Graph of triangles with a shared vertex

In the mathematical field of graph theory, the friendship graphFn is a planar, undirected graph with 2n + 1 vertices and 3n edges.

In the mathematical field of graph theory, an integral graph is a graph whose adjacency matrix's spectrum consists entirely of integers. In other words, a graph is an integral graph if all of the roots of the characteristic polynomial of its adjacency matrix are integers.

<span class="mw-page-title-main">Gosset graph</span>

The Gosset graph, named after Thorold Gosset, is a specific regular graph (1-skeleton of the 7-dimensional 321 polytope) with 56 vertices and valency 27.

<span class="mw-page-title-main">Brouwer–Haemers graph</span>

In the mathematical field of graph theory, the Brouwer–Haemers graph is a 20-regular undirected graph with 81 vertices and 810 edges. It is a strongly regular graph, a distance-transitive graph, and a Ramanujan graph. Although its construction is folklore, it was named after Andries Brouwer and Willem H. Haemers, who proved its uniqueness as a strongly regular graph.

In the mathematical field of graph theory, a prism graph is a graph that has one of the prisms as its skeleton.

<span class="mw-page-title-main">Locally linear graph</span> Graph where every edge is in one triangle

In graph theory, a locally linear graph is an undirected graph in which every edge belongs to exactly one triangle. Equivalently, for each vertex of the graph, its neighbors are each adjacent to exactly one other neighbor, so the neighbors can be paired up into an induced matching. Locally linear graphs have also been called locally matched graphs. Their triangles form the hyperedges of triangle-free 3-uniform linear hypergraphs and the blocks of certain partial Steiner triple systems, and the locally linear graphs are exactly the Gaifman graphs of these hypergraphs or partial Steiner systems.

<span class="mw-page-title-main">Berlekamp–Van Lint–Seidel graph</span>

In graph theory, the Berlekamp–Van Lint–Seidel graph is a locally linear strongly regular graph with parameters . This means that it has 243 vertices, 22 edges per vertex, exactly one shared neighbor per pair of adjacent vertices, and exactly two shared neighbors per pair of non-adjacent vertices. It was constructed by Elwyn Berlekamp, J. H. van Lint, and Johan Jacob Seidel as the coset graph of the ternary Golay code.

In graph theory, the Games graph is the largest known locally linear strongly regular graph. Its parameters as a strongly regular graph are (729,112,1,20). This means that it has 729 vertices, and 40824 edges. Each edge is in a unique triangle and each non-adjacent pair of vertices have exactly 20 shared neighbors. It is named after Richard A. Games, who suggested its construction in an unpublished communication and wrote about related constructions.

References

  1. 1 2 Gago-Vargas, Jesús; Hartillo-Hermoso, Maria Isabel; Martín-Morales, Jorge; Ucha-Enríquez, Jose Maria (2006), "Sudokus and Gröbner bases: Not only a divertimento", in Ganzha, Victor G.; Mayr, Ernst W.; Vorozhtsov, Evgenii V. (eds.), Computer Algebra in Scientific Computing, 9th International Workshop, CASC 2006, Chisinau, Moldova, September 11–15, 2006, Proceedings, Lecture Notes in Computer Science, vol. 4194, Springer, pp. 155–165, doi:10.1007/11870814_13, hdl: 11441/23605
  2. 1 2 Herzberg, Agnes M.; Murty, M. Ram (2007), "Sudoku squares and chromatic polynomials" (PDF), Notices of the American Mathematical Society , 54 (6): 708–717, MR   2327972
  3. 1 2 Rosenhouse, Jason; Taalman, Laura (2011), Taking Sudoku Seriously: The math behind the world's most popular pencil puzzle, Oxford University Press, pp. 128–130
  4. Sander, Torsten (2009), "Sudoku graphs are integral", Electronic Journal of Combinatorics, 16 (1): Note 25, 7pp, doi: 10.37236/263 , MR   2529816
  5. Klotz, Walter; Sander, Torsten (2010), "Integral Cayley graphs over abelian groups", Electronic Journal of Combinatorics, 17 (1): Research Paper 81, 13pp, doi: 10.37236/353 , MR   2651734
  6. Weisstein, Eric W., "Brouwer–Haemers Graph", MathWorld