Coxeter graph

Last updated
Coxeter graph
Coxeter graph.svg
The Coxeter graph
Named after H. S. M. Coxeter
Vertices 28
Edges 42
Radius 4
Diameter 4
Girth 7
Automorphisms 336 (PGL 2(7))
Chromatic number 3
Chromatic index 3
Book thickness 3
Queue number 2
Properties Symmetric
Distance-regular
Distance-transitive
Cubic
Hypohamiltonian
Table of graphs and parameters

In the mathematical field of graph theory, the Coxeter graph is a 3-regular graph with 28 vertices and 42 edges. [1] It is one of the 13 known cubic distance-regular graphs. [2] It is named after Harold Scott MacDonald Coxeter.

Contents

Properties

The Coxeter graph has chromatic number 3, chromatic index 3, radius 4, diameter 4 and girth 7. It is also a 3-vertex-connected graph and a 3-edge-connected graph. It has book thickness 3 and queue number 2. [3]

The Coxeter graph is hypohamiltonian: it does not itself have a Hamiltonian cycle but every graph formed by removing a single vertex from it is Hamiltonian. It has rectilinear crossing number 11, and is the smallest cubic graph with that crossing number [4] (sequence A110507 in the OEIS ).

Construction

The simplest construction of a Coxeter graph is from a Fano plane. Take the 7C3 = 35 possible 3-combinations on 7 objects. Discard the 7 triplets that correspond to the lines of the Fano plane, leaving 28 triplets. Link two triplets if they are disjoint. The result is the Coxeter graph. (See image.) This construction exhibits the Coxeter graph as an induced subgraph of the odd graph O4, also known as the Kneser graph KG7,3.

The Coxeter graph may also be constructed from the smaller distance-regular Heawood graph by constructing a vertex for each 6-cycle in the Heawood graph and an edge for each disjoint pair of 6-cycles. [5]

The Coxeter graph may be derived from the Hoffman-Singleton graph. Take any vertex v in the Hoffman-Singleton graph. There is an independent set of size 15 that includes v. Delete the 7 neighbors of v, and the whole independent set including v, leaving behind the Coxeter graph.

Algebraic properties

The automorphism group of the Coxeter graph is a group of order 336. [6] It acts transitively on the vertices, on the edges and on the arcs of the graph. Therefore, the Coxeter graph is a symmetric graph. It has automorphisms that take any vertex to any other vertex and any edge to any other edge. According to the Foster census, the Coxeter graph, referenced as F28A, is the only cubic symmetric graph on 28 vertices. [7]

The Coxeter graph is also uniquely determined by its graph spectrum, the set of graph eigenvalues of its adjacency matrix. [8]

As a finite connected vertex-transitive graph that contains no Hamiltonian cycle, the Coxeter graph is a counterexample to a variant of the Lovász conjecture, but the canonical formulation of the conjecture asks for an Hamiltonian path and is verified by the Coxeter graph.

Only five examples of vertex-transitive graph with no Hamiltonian cycles are known : the complete graph K2, the Petersen graph, the Coxeter graph and two graphs derived from the Petersen and Coxeter graphs by replacing each vertex with a triangle. [9]

The characteristic polynomial of the Coxeter graph is . It is the only graph with this characteristic polynomial, making it a graph determined by its spectrum.

Layouts

These are different representations of the Coxeter graph, using the same vertex labels. There are four colors, and seven vertices of each color.
Each red, green or blue vertex is connected with two vertices of the same color (thin edges forming 7-cycles) and to one white vertex (thick edges).

Coxeter graph RGBW 7 central.svg
Coxeter graph RGBW 7 separate.svg
red heptagon, green obtuse and blue acute heptagram
left: 7-fold rotational symmetry
in 24-gon
3-fold rotational symmetry Coxeter graph RGBW 24.svg
in 24-gon
3-fold rotational symmetry
3-fold dihedral symmetry
(compare variant with Fano plane vertices) Coxeter graph RGBW 6.svg
3-fold dihedral symmetry
(compare variant with Fano plane vertices)
in octagon
mirror symmetry Coxeter graph RGBW 8.svg
in octagon
mirror symmetry


Properties

The graph obtained by any edge excision from the Coxeter is Hamilton-connected. Edge excised Coxeter graph.svg
The graph obtained by any edge excision from the Coxeter is Hamilton-connected.
The chromatic number of the Coxeter graph is 3. Coxeter graph 3COL.svg
The chromatic number of the Coxeter graph is 3.
The rectilinear crossing number of the Coxeter graph is 11. Coxeter graph 11C.svg
The rectilinear crossing number of the Coxeter graph is 11.

Related Research Articles

<span class="mw-page-title-main">Petersen graph</span> Cubic graph with 10 vertices and 15 edges

In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring.

In the mathematical field of graph theory, a vertex-transitive graph is a graph G in which, given any two vertices v1 and v2 of G, there is some automorphism

<span class="mw-page-title-main">Cubic graph</span> Graph with all vertices of degree 3

In the mathematical field of graph theory, a cubic graph is a graph in which all vertices have degree three. In other words, a cubic graph is a 3-regular graph. Cubic graphs are also called trivalent graphs.

<span class="mw-page-title-main">Heawood graph</span> Undirected graph with 14 vertices

In the mathematical field of graph theory, the Heawood graph is an undirected graph with 14 vertices and 21 edges, named after Percy John Heawood.

<span class="mw-page-title-main">Symmetric graph</span> Graph in which all ordered pairs of linked nodes are automorphic

In the mathematical field of graph theory, a graph G is symmetric if, given any two pairs of adjacent vertices u1v1 and u2v2 of G, there is an automorphism

<span class="mw-page-title-main">Hoffman–Singleton graph</span> 7-regular undirected graph with 50 nodes and 175 edges

In the mathematical field of graph theory, the Hoffman–Singleton graph is a 7-regular undirected graph with 50 vertices and 175 edges. It is the unique strongly regular graph with parameters (50,7,0,1). It was constructed by Alan Hoffman and Robert Singleton while trying to classify all Moore graphs, and is the highest-order Moore graph known to exist. Since it is a Moore graph where each vertex has degree 7, and the girth is 5, it is a (7,5)-cage.

<span class="mw-page-title-main">Pappus graph</span> Bipartite, 3-regular undirected graph

In the mathematical field of graph theory, the Pappus graph is a bipartite, 3-regular, undirected graph with 18 vertices and 27 edges, formed as the Levi graph of the Pappus configuration. It is named after Pappus of Alexandria, an ancient Greek mathematician who is believed to have discovered the "hexagon theorem" describing the Pappus configuration. All the cubic, distance-regular graphs are known; the Pappus graph is one of the 13 such graphs.

<span class="mw-page-title-main">Foster graph</span> Bipartite 3-regular graph with 90 vertices and 135 edges

In the mathematical field of graph theory, the Foster graph is a bipartite 3-regular graph with 90 vertices and 135 edges.

<span class="mw-page-title-main">Möbius–Kantor graph</span>

In the mathematical field of graph theory, the Möbius–Kantor graph is a symmetric bipartite cubic graph with 16 vertices and 24 edges named after August Ferdinand Möbius and Seligmann Kantor. It can be defined as the generalized Petersen graph G(8,3): that is, it is formed by the vertices of an octagon, connected to the vertices of an eight-point star in which each point of the star is connected to the points three steps away from it.

<span class="mw-page-title-main">Shrikhande graph</span>

In the mathematical field of graph theory, the Shrikhande graph is a named graph discovered by S. S. Shrikhande in 1959. It is a strongly regular graph with 16 vertices and 48 edges, with each vertex having degree 6. Every pair of nodes has exactly two other neighbors in common, whether the pair of nodes is connected or not.

<span class="mw-page-title-main">Franklin graph</span> Graph often embedded in the Klein bottle

In the mathematical field of graph theory, the Franklin graph is a 3-regular graph with 12 vertices and 18 edges.

<span class="mw-page-title-main">Biggs–Smith graph</span> Cubic distance-regular graph with 102 nodes and 153 edges

In the mathematical field of graph theory, the Biggs–Smith graph is a 3-regular graph with 102 vertices and 153 edges.

<span class="mw-page-title-main">Dyck graph</span>

In the mathematical field of graph theory, the Dyck graph is a 3-regular graph with 32 vertices and 48 edges, named after Walther von Dyck.

<span class="mw-page-title-main">Nauru graph</span> 24-vertex symmetric bipartite cubic graph

In the mathematical field of graph theory, the Nauru graph is a symmetric, bipartite, cubic graph with 24 vertices and 36 edges. It was named by David Eppstein after the twelve-pointed star in the flag of Nauru.

<span class="mw-page-title-main">F26A graph</span>

In the mathematical field of graph theory, the F26A graph is a symmetric bipartite cubic graph with 26 vertices and 39 edges.

<span class="mw-page-title-main">Ljubljana graph</span> Undirected bipartite graph with 112 vertices and 168 edges

In the mathematical field of graph theory, the Ljubljana graph is an undirected bipartite graph with 112 vertices and 168 edges, rediscovered in 2002 and named after Ljubljana.

<span class="mw-page-title-main">Tutte 12-cage</span>

In the mathematical field of graph theory, the Tutte 12-cage or Benson graph is a 3-regular graph with 126 vertices and 189 edges named after W. T. Tutte.

<span class="mw-page-title-main">Italo Jose Dejter</span>

Italo Jose Dejter is an Argentine-born American mathematician, a retired professor of mathematics and computer science from the University of Puerto Rico, and a researcher in algebraic topology, differential topology, graph theory, coding theory and combinatorial designs. He obtained a Licentiate degree in mathematics from University of Buenos Aires in 1967, arrived at Rutgers University in 1970 by means of a Guggenheim Fellowship and obtained a Ph.D. degree in mathematics in 1975 under the supervision of Professor Ted Petrie, with support of the National Science Foundation. He was a professor at the Federal University of Santa Catarina, Brazil, from 1977 to 1984, with grants from the National Council for Scientific and Technological Development, (CNPq).

<span class="mw-page-title-main">Klein graphs</span>

In the mathematical field of graph theory, the Klein graphs are two different but related regular graphs, each with 84 edges. Each can be embedded in the orientable surface of genus 3, in which they form dual graphs.

<span class="mw-page-title-main">Zero-symmetric graph</span>

In the mathematical field of graph theory, a zero-symmetric graph is a connected graph in which each vertex has exactly three incident edges and, for each two vertices, there is a unique symmetry taking one vertex to the other. Such a graph is a vertex-transitive graph but cannot be an edge-transitive graph: the number of symmetries equals the number of vertices, too few to take every edge to every other edge.

References

  1. Weisstein, Eric W. "Coxeter Graph". MathWorld .
  2. Brouwer, A. E.; Cohen, A. M.; and Neumaier, A. Distance-Regular Graphs. New York: Springer-Verlag, 1989.
  3. Wolz, Jessica; Engineering Linear Layouts with SAT. Master Thesis, University of Tübingen, 2018
  4. Haythorpe, Michael; Newcombe, Alex (2018), There are no Cubic Graphs on 26 Vertices with Crossing Number 11, arXiv: 1804.10336
  5. Dejter, Italo J. (2011), "From the Coxeter graph to the Klein graph", Journal of Graph Theory , 70: 1–9, arXiv: 1002.1960 , doi:10.1002/jgt.20597, S2CID   754481 .
  6. Royle, G. F028A data [ permanent dead link ]
  7. Conder, M. and Dobcsányi, P. "Trivalent Symmetric Graphs Up to 768 Vertices." J. Combin. Math. Combin. Comput. 40, 41-63, 2002.
  8. E. R. van Dam and W. H. Haemers, Spectral Characterizations of Some Distance-Regular Graphs. J. Algebraic Combin. 15, pages 189-202, 2003
  9. Royle, G. "Cubic Symmetric Graphs (The Foster Census)." Archived 2015-09-12 at the Wayback Machine