Circulant graph

Last updated
The Paley graph of order 13, an example of a circulant graph. Paley13.svg
The Paley graph of order 13, an example of a circulant graph.

In graph theory, a circulant graph is an undirected graph acted on by a cyclic group of symmetries which takes any vertex to any other vertex. It is sometimes called a cyclic graph, [1] but this term has other meanings.

Contents

Equivalent definitions

Circulant graphs can be described in several equivalent ways: [2]

Examples

Every cycle graph is a circulant graph, as is every crown graph with number of vertices congruent to 2 modulo 4.

The Paley graphs of order n (where n is a prime number congruent to 1 modulo 4) is a graph in which the vertices are the numbers from 0 to n 1 and two vertices are adjacent if their difference is a quadratic residue modulo n. Since the presence or absence of an edge depends only on the difference modulo n of two vertex numbers, any Paley graph is a circulant graph.

Every Möbius ladder is a circulant graph, as is every complete graph. A complete bipartite graph is a circulant graph if it has the same number of vertices on both sides of its bipartition.

If two numbers m and n are relatively prime, then the m×n rook's graph (a graph that has a vertex for each square of an m×n chessboard and an edge for each two squares that a rook can move between in a single move) is a circulant graph. This is because its symmetries include as a subgroup the cyclic group Cmn  Cm×Cn. More generally, in this case, the tensor product of graphs between any m- and n-vertex circulants is itself a circulant. [2]

Many of the known lower bounds on Ramsey numbers come from examples of circulant graphs that have small maximum cliques and small maximum independent sets. [1]

A specific example

The circulant graph with jumps is defined as the graph with nodes labeled where each node i is adjacent to 2k nodes .

Self-complementary circulants

A self-complementary graph is a graph in which replacing every edge by a non-edge and vice versa produces an isomorphic graph. For instance, a five-vertex cycle graph is self-complementary, and is also a circulant graph. More generally every Paley graph of prime order is a self-complementary circulant graph. [4] Horst Sachs showed that, if a number n has the property that every prime factor of n is congruent to 1 modulo 4, then there exists a self-complementary circulant with n vertices. He conjectured that this condition is also necessary: that no other values of n allow a self-complementary circulant to exist. [2] [4] The conjecture was proven some 40 years later, by Vilfred. [2]

Ádám's conjecture

Define a circulant numbering of a circulant graph to be a labeling of the vertices of the graph by the numbers from 0 to n 1 in such a way that, if some two vertices numbered x and y are adjacent, then every two vertices numbered z and (zx + y) mod n are adjacent. Equivalently, a circulant numbering is a numbering of the vertices for which the adjacency matrix of the graph is a circulant matrix.

Let a be an integer that is relatively prime to n, and let b be any integer. Then the linear function that takes a number x to ax + b transforms a circulant numbering to another circulant numbering. András Ádám conjectured that these linear maps are the only ways of renumbering a circulant graph while preserving the circulant property: that is, if G and H are isomorphic circulant graphs, with different numberings, then there is a linear map that transforms the numbering for G into the numbering for H. However, Ádám's conjecture is now known to be false. A counterexample is given by graphs G and H with 16 vertices each; a vertex x in G is connected to the six neighbors x ± 1, x ± 2, and x ± 7 modulo 16, while in H the six neighbors are x ± 2, x ± 3, and x ± 5 modulo 16. These two graphs are isomorphic, but their isomorphism cannot be realized by a linear map. [2]

Toida's conjecture refines Ádám's conjecture by considering only a special class of circulant graphs, in which all of the differences between adjacent graph vertices are relatively prime to the number of vertices. According to this refined conjecture, these special circulant graphs should have the property that all of their symmetries come from symmetries of the underlying additive group of numbers modulo n. It was proven by two groups in 2001 and 2002. [5] [6]

Algorithmic questions

There is a polynomial-time recognition algorithm for circulant graphs, and the isomorphism problem for circulant graphs can be solved in polynomial time. [7] [8]

Related Research Articles

<span class="mw-page-title-main">Isomorphism</span> In mathematics, invertible homomorphism

In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσοςisos "equal", and μορφήmorphe "form" or "shape".

<span class="mw-page-title-main">Cyclic group</span> Mathematical group that can be generated as the set of powers of a single element

In abstract algebra, a cyclic group or monogenous group is a group, denoted Cn, that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation to g or its inverse. Each element can be written as an integer power of g in multiplicative notation, or as an integer multiple of g in additive notation. This element g is called a generator of the group.

In graph theory, a regular graph is a graph where each vertex has the same number of neighbors; i.e. every vertex has the same degree or valency. A regular directed graph must also satisfy the stronger condition that the indegree and outdegree of each internal vertex are equal to each other. A regular graph with vertices of degree k is called a k‑regular graph or regular graph of degree k.

<span class="mw-page-title-main">Dihedral group</span> Group of symmetries of a regular polygon

In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry.

<span class="mw-page-title-main">Petersen graph</span> Cubic graph with 10 vertices and 15 edges

In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring.

Informally, the reconstruction conjecture in graph theory says that graphs are determined uniquely by their subgraphs. It is due to Kelly and Ulam.

<span class="mw-page-title-main">Symmetric graph</span> Graph in which all ordered pairs of linked nodes are automorphic

In the mathematical field of graph theory, a graph G is symmetric if, given any two pairs of adjacent vertices u1v1 and u2v2 of G, there is an automorphism

In the mathematical discipline of graph theory, a graph labeling is the assignment of labels, traditionally represented by integers, to edges and/or vertices of a graph.

<span class="mw-page-title-main">Paley graph</span>

In mathematics, Paley graphs are undirected graphs constructed from the members of a suitable finite field by connecting pairs of elements that differ by a quadratic residue. The Paley graphs form an infinite family of conference graphs, which yield an infinite family of symmetric conference matrices. Paley graphs allow graph-theoretic tools to be applied to the number theory of quadratic residues, and have interesting properties that make them useful in graph theory more generally.

<span class="mw-page-title-main">Hypercube graph</span> Graphs formed by a hypercubes edges and vertices

In graph theory, the hypercube graphQn is the graph formed from the vertices and edges of an n-dimensional hypercube. For instance, the cube graph Q3 is the graph formed by the 8 vertices and 12 edges of a three-dimensional cube. Qn has 2n vertices, 2n – 1n edges, and is a regular graph with n edges touching each vertex.

<span class="mw-page-title-main">Rook's graph</span> Graph of chess rook moves

In graph theory, a rook's graph is an undirected graph that represents all legal moves of the rook chess piece on a chessboard. Each vertex of a rook's graph represents a square on a chessboard, and there is an edge between any two squares sharing a row (rank) or column (file), the squares that a rook can move between. These graphs can be constructed for chessboards of any rectangular shape. Although rook's graphs have only minor significance in chess lore, they are more important in the abstract mathematics of graphs through their alternative constructions: rook's graphs are the Cartesian product of two complete graphs, and are the line graphs of complete bipartite graphs. The square rook's graphs constitute the two-dimensional Hamming graphs.

<span class="mw-page-title-main">Rado graph</span> Infinite graph containing all countable graphs

In the mathematical field of graph theory, the Rado graph, Erdős–Rényi graph, or random graph is a countably infinite graph that can be constructed by choosing independently at random for each pair of its vertices whether to connect the vertices by an edge. The names of this graph honor Richard Rado, Paul Erdős, and Alfréd Rényi, mathematicians who studied it in the early 1960s; it appears even earlier in the work of Wilhelm Ackermann. The Rado graph can also be constructed non-randomly, by symmetrizing the membership relation of the hereditarily finite sets, by applying the BIT predicate to the binary representations of the natural numbers, or as an infinite Paley graph that has edges connecting pairs of prime numbers congruent to 1 mod 4 that are quadratic residues modulo each other.

<span class="mw-page-title-main">Circular coloring</span>

In graph theory, circular coloring is a kind of coloring that may be viewed as a refinement of the usual graph coloring. The circular chromatic number of a graph , denoted can be given by any of the following definitions, all of which are equivalent.

  1. is the infimum over all real numbers so that there exists a map from to a circle of circumference 1 with the property that any two adjacent vertices map to points at distance along this circle.
  2. is the infimum over all rational numbers so that there exists a map from to the cyclic group with the property that adjacent vertices map to elements at distance apart.
  3. In an oriented graph, declare the imbalance of a cycle to be divided by the minimum of the number of edges directed clockwise and the number of edges directed counterclockwise. Define the imbalance of the oriented graph to be the maximum imbalance of a cycle. Now, is the minimum imbalance of an orientation of .
<span class="mw-page-title-main">Odd graph</span> Family of symmetric graphs which generalize the Petersen graph

In the mathematical field of graph theory, the odd graphs are a family of symmetric graphs defined from certain set systems. They include and generalize the Petersen graph.

<span class="mw-page-title-main">Grinberg's theorem</span> On Hamiltonian cycles in planar graphs

In graph theory, Grinberg's theorem is a necessary condition for a planar graph to contain a Hamiltonian cycle, based on the lengths of its face cycles. If a graph does not meet this condition, it is not Hamiltonian. The result has been widely used to prove that certain planar graphs constructed to have additional properties are not Hamiltonian; for instance it can prove non-Hamiltonicity of some counterexamples to Tait's conjecture that cubic polyhedral graphs are Hamiltonian.

<span class="mw-page-title-main">Generalized Petersen graph</span> Family of cubic graphs formed from regular and star polygons

In graph theory, the generalized Petersen graphs are a family of cubic graphs formed by connecting the vertices of a regular polygon to the corresponding vertices of a star polygon. They include the Petersen graph and generalize one of the ways of constructing the Petersen graph. The generalized Petersen graph family was introduced in 1950 by H. S. M. Coxeter and was given its name in 1969 by Mark Watkins.

<span class="mw-page-title-main">Folkman graph</span> Bipartite 4-regular graph with 20 nodes and 40 edges

In the mathematical field of graph theory, the Folkman graph is a 4-regular graph with 20 vertices and 40 edges. It is a regular bipartite graph with symmetries taking every edge to every other edge, but the two sides of its bipartition are not symmetric with each other, making it the smallest possible semi-symmetric graph. It is named after Jon Folkman, who constructed it for this property in 1967.

In combinatorial mathematics, Toida's conjecture, due to Shunichi Toida in 1977, is a refinement of the disproven Ádám's conjecture from 1967.

<span class="mw-page-title-main">Zero-divisor graph</span> Graph of zero divisors of a commutative ring

In mathematics, and more specifically in combinatorial commutative algebra, a zero-divisor graph is an undirected graph representing the zero divisors of a commutative ring. It has elements of the ring as its vertices, and pairs of elements whose product is zero as its edges.

References

  1. 1 2 Small Ramsey Numbers, Stanisław P. Radziszowski, Electronic J. Combinatorics , dynamic survey 1, updated 2014.
  2. 1 2 3 4 5 Vilfred, V. (2004), "On circulant graphs", in Balakrishnan, R.; Sethuraman, G.; Wilson, Robin J. (eds.), Graph Theory and its Applications (Anna University, Chennai, March 14–16, 2001), Alpha Science, pp. 34–36.
  3. Alspach, Brian (1997), "Isomorphism and Cayley graphs on abelian groups", Graph symmetry (Montreal, PQ, 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 497, Dordrecht: Kluwer Acad. Publ., pp. 1–22, MR   1468786 .
  4. 1 2 Sachs, Horst (1962). "Über selbstkomplementäre Graphen". Publicationes Mathematicae Debrecen. 9: 270–288. MR   0151953..
  5. Muzychuk, Mikhail; Klin, Mikhail; Pöschel, Reinhard (2001), "The isomorphism problem for circulant graphs via Schur ring theory", Codes and association schemes (Piscataway, NJ, 1999), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 56, Providence, Rhode Island: American Mathematical Society, pp. 241–264, MR   1816402
  6. Dobson, Edward; Morris, Joy (2002), "Toida's conjecture is true", Electronic Journal of Combinatorics, 9 (1): R35:1–R35:14, MR   1928787
  7. Muzychuk, Mikhail (2004). "A Solution of the Isomorphism Problem for Circulant Graphs". Proc. London Math. Soc. 88: 1–41. doi:10.1112/s0024611503014412. MR   2018956.
  8. Evdokimov, Sergei; Ponomarenko, Ilia (2004). "Recognition and verification of an isomorphism of circulant graphs in polynomial time". St. Petersburg Math. J. 15: 813–835. doi: 10.1090/s1061-0022-04-00833-7 . MR   2044629.