Self-complementary graph

Last updated
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
Graph A
Graph complement of A
Graph A is isomorphic to its complement. Self-complementary NZ graph.svg
  Graph A
  Graph complement of A
Graph A is isomorphic to its complement.

In the mathematical field of graph theory, a self-complementary graph is a graph which is isomorphic to its complement. The simplest non-trivial self-complementary graphs are the 4-vertex path graph and the 5-vertex cycle graph. There is no known characterization of self-complementary graphs.

Contents

Examples

Every Paley graph is self-complementary. [1] For example, the 3×3 rook's graph (the Paley graph of order nine) is self-complementary, by a symmetry that keeps the center vertex in place but exchanges the roles of the four side midpoints and four corners of the grid. [2] All strongly regular self-complementary graphs with fewer than 37 vertices are Paley graphs; however, there are strongly regular graphs on 37, 41, and 49 vertices that are not Paley graphs. [3]

The Rado graph is an infinite self-complementary graph. [4]

Properties

An n-vertex self-complementary graph has exactly half as many edges of the complete graph, i.e., n(n − 1)/4 edges, and (if there is more than one vertex) it must have diameter either 2 or 3. [1] Since n(n − 1) must be divisible by 4, n must be congruent to 0 or 1 modulo 4; for instance, a 6-vertex graph cannot be self-complementary.

Computational complexity

The problems of checking whether two self-complementary graphs are isomorphic and of checking whether a given graph is self-complementary are polynomial-time equivalent to the general graph isomorphism problem. [5]

Related Research Articles

<span class="mw-page-title-main">Petersen graph</span> Cubic graph with 10 vertices and 15 edges

In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring.

In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph.

<span class="mw-page-title-main">Graph isomorphism</span> Bijection between the vertex set of two graphs

In graph theory, an isomorphism of graphsG and H is a bijection between the vertex sets of G and H

Informally, the reconstruction conjecture in graph theory says that graphs are determined uniquely by their subgraphs. It is due to Kelly and Ulam.

In graph theory, an undirected graph H is called a minor of the graph G if H can be formed from G by deleting edges, vertices and by contracting edges.

<span class="mw-page-title-main">Complete bipartite graph</span> Bipartite graph where each node of 1st set is linked to all nodes of 2nd set

In the mathematical field of graph theory, a complete bipartite graph or biclique is a special kind of bipartite graph where every vertex of the first set is connected to every vertex of the second set.

In the mathematical discipline of graph theory, the line graph of an undirected graph G is another graph L(G) that represents the adjacencies between edges of G. L(G) is constructed in the following way: for each edge in G, make a vertex in L(G); for every two edges in G that have a vertex in common, make an edge between their corresponding vertices in L(G).

<span class="mw-page-title-main">Complement graph</span> Graph with same nodes but opposite connections as another

In the mathematical field of graph theory, the complement or inverse of a graph G is a graph H on the same vertices such that two distinct vertices of H are adjacent if and only if they are not adjacent in G. That is, to generate the complement of a graph, one fills in all the missing edges required to form a complete graph, and removes all the edges that were previously there.

<span class="mw-page-title-main">Symmetric graph</span> Graph in which all ordered pairs of linked nodes are automorphic

In the mathematical field of graph theory, a graph G is symmetric if, given any two pairs of adjacent vertices u1v1 and u2v2 of G, there is an automorphism

The graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic.

<span class="mw-page-title-main">Dual graph</span> Graph representing faces of another graph

In the mathematical discipline of graph theory, the dual graph of a planar graph G is a graph that has a vertex for each face of G. The dual graph has an edge for each pair of faces in G that are separated from each other by an edge, and a self-loop when the same face appears on both sides of an edge. Thus, each edge e of G has a corresponding dual edge, whose endpoints are the dual vertices corresponding to the faces on either side of e. The definition of the dual depends on the choice of embedding of the graph G, so it is a property of plane graphs rather than planar graphs. For planar graphs generally, there may be multiple dual graphs, depending on the choice of planar embedding of the graph.

<span class="mw-page-title-main">Circulant graph</span> Undirected graph acted on by a vertex-transitive cyclic group of symmetries

In graph theory, a circulant graph is an undirected graph acted on by a cyclic group of symmetries which takes any vertex to any other vertex. It is sometimes called a cyclic graph, but this term has other meanings.

<span class="mw-page-title-main">Paley graph</span>

In mathematics, Paley graphs are undirected graphs constructed from the members of a suitable finite field by connecting pairs of elements that differ by a quadratic residue. The Paley graphs form an infinite family of conference graphs, which yield an infinite family of symmetric conference matrices. Paley graphs allow graph-theoretic tools to be applied to the number theory of quadratic residues, and have interesting properties that make them useful in graph theory more generally.

<span class="mw-page-title-main">Rado graph</span> Infinite graph containing all countable graphs

In the mathematical field of graph theory, the Rado graph, Erdős–Rényi graph, or random graph is a countably infinite graph that can be constructed by choosing independently at random for each pair of its vertices whether to connect the vertices by an edge. The names of this graph honor Richard Rado, Paul Erdős, and Alfréd Rényi, mathematicians who studied it in the early 1960s; it appears even earlier in the work of Wilhelm Ackermann (1937). The Rado graph can also be constructed non-randomly, by symmetrizing the membership relation of the hereditarily finite sets, by applying the BIT predicate to the binary representations of the natural numbers, or as an infinite Paley graph that has edges connecting pairs of prime numbers congruent to 1 mod 4 that are quadratic residues modulo each other.

In graph theory, a branch of mathematics, a skew-symmetric graph is a directed graph that is isomorphic to its own transpose graph, the graph formed by reversing all of its edges, under an isomorphism that is an involution without any fixed points. Skew-symmetric graphs are identical to the double covering graphs of bidirected graphs.

<span class="mw-page-title-main">Odd graph</span> Family of symmetric graphs which generalize the Petersen graph

In the mathematical field of graph theory, the odd graphs are a family of symmetric graphs defined from certain set systems. They include and generalize the Petersen graph.

<span class="mw-page-title-main">Clebsch graph</span> One of two different regular graphs with 16 vertices

In the mathematical field of graph theory, the Clebsch graph is either of two complementary graphs on 16 vertices, a 5-regular graph with 40 edges and a 10-regular graph with 80 edges. The 80-edge graph is the dimension-5 halved cube graph; it was called the Clebsch graph name by Seidel (1968) because of its relation to the configuration of 16 lines on the quartic surface discovered in 1868 by the German mathematician Alfred Clebsch. The 40-edge variant is the dimension-5 folded cube graph; it is also known as the Greenwood–Gleason graph after the work of Robert E. Greenwood and Andrew M. Gleason (1955), who used it to evaluate the Ramsey number R(3,3,3) = 17.

<span class="mw-page-title-main">Friendship graph</span> Graph of triangles with a shared vertex

In the mathematical field of graph theory, the friendship graphFn is a planar, undirected graph with 2n + 1 vertices and 3n edges.

In the mathematical fields of graph theory and finite model theory, the logic of graphs deals with formal specifications of graph properties using sentences of mathematical logic. There are several variations in the types of logical operation that can be used in these sentences. The first-order logic of graphs concerns sentences in which the variables and predicates concern individual vertices and edges of a graph, while monadic second-order graph logic allows quantification over sets of vertices or edges. Logics based on least fixed point operators allow more general predicates over tuples of vertices, but these predicates can only be constructed through fixed-point operators, restricting their power.

<span class="mw-page-title-main">Locally linear graph</span> Graph where every edge is in one triangle

In graph theory, a locally linear graph is an undirected graph in which every edge belongs to exactly one triangle. Equivalently, for each vertex of the graph, its neighbors are each adjacent to exactly one other neighbor, so the neighbors can be paired up into an induced matching. Locally linear graphs have also been called locally matched graphs. Their triangles form the hyperedges of triangle-free 3-uniform linear hypergraphs and the blocks of certain partial Steiner triple systems, and the locally linear graphs are exactly the Gaifman graphs of these hypergraphs or partial Steiner systems.

References

  1. 1 2 Sachs, Horst (1962), "Über selbstkomplementäre Graphen", Publicationes Mathematicae Debrecen , 9: 270–288, MR   0151953 .
  2. Shpectorov, S. (1998), "Complementary l1-graphs", Discrete Mathematics, 192 (1–3): 323–331, doi:10.1016/S0012-365X(98)0007X-1, MR   1656740 .
  3. Rosenberg, I. G. (1982), "Regular and strongly regular selfcomplementary graphs", Theory and practice of combinatorics, North-Holland Math. Stud., vol. 60, Amsterdam: North-Holland, pp. 223–238, MR   0806985 .
  4. Cameron, Peter J. (1997), "The random graph", The mathematics of Paul Erdős, II, Algorithms Combin., vol. 14, Berlin: Springer, pp. 333–351, arXiv: 1301.7544 , Bibcode:2013arXiv1301.7544C, MR   1425227 . See in particular Proposition 5.
  5. Colbourn, Marlene J.; Colbourn, Charles J. (1978), "Graph isomorphism and self-complementary graphs", SIGACT News , 10 (1): 25–29, doi:10.1145/1008605.1008608 .