Null graph

Last updated

In the mathematical field of graph theory, the term "null graph" may refer either to the order-zero graph, or alternatively, to any edgeless graph (the latter is sometimes called an "empty graph").

Contents

Order-zero graph

Order-zero graph (null graph)
Vertices 0
Edges 0
Girth
Automorphisms 1
Chromatic number 0
Chromatic index 0
Genus 0
Properties Integral
Symmetric
Treewidth -1
Notation
Table of graphs and parameters

The order-zero graph, , is the unique graph having no vertices (hence its order is zero). It follows that also has no edges. Thus the null graph is a regular graph of degree zero. Some authors exclude from consideration as a graph (either by definition, or more simply as a matter of convenience). Whether including as a valid graph is useful depends on context. On the positive side, follows naturally from the usual set-theoretic definitions of a graph (it is the ordered pair (V, E) for which the vertex and edge sets, V and E, are both empty), in proofs it serves as a natural base case for mathematical induction, and similarly, in recursively defined data structures is useful for defining the base case for recursion (by treating the null tree as the child of missing edges in any non-null binary tree, every non-null binary tree has exactly two children). On the negative side, including as a graph requires that many well-defined formulas for graph properties include exceptions for it (for example, either "counting all strongly connected components of a graph" becomes "counting all non-null strongly connected components of a graph", or the definition of connected graphs has to be modified not to include K0). To avoid the need for such exceptions, it is often assumed in literature that the term graph implies "graph with at least one vertex" unless context suggests otherwise. [1] [2]

In category theory, the order-zero graph is, according to some definitions of "category of graphs," the initial object in the category.

does fulfill (vacuously) most of the same basic graph properties as does (the graph with one vertex and no edges). As some examples, is of size zero, it is equal to its complement graph , a forest, and a planar graph. It may be considered undirected, directed, or even both; when considered as directed, it is a directed acyclic graph. And it is both a complete graph and an edgeless graph. However, definitions for each of these graph properties will vary depending on whether context allows for .

Edgeless graph

Edgeless graph (empty graph, null graph)
Vertices n
Edges 0
Radius 0
Diameter 0
Girth
Automorphisms n!
Chromatic number 1
Chromatic index 0
Genus 0
Properties Integral
Symmetric
Notation
Table of graphs and parameters

For each natural number n, the edgeless graph (or empty graph) of order n is the graph with n vertices and zero edges. An edgeless graph is occasionally referred to as a null graph in contexts where the order-zero graph is not permitted. [1] [2]

It is a 0-regular graph. The notation arises from the fact that the n-vertex edgeless graph is the complement of the complete graph .

See also

Notes

  1. 1 2 Weisstein, Eric W. "Empty Graph". MathWorld .
  2. 1 2 Weisstein, Eric W. "Null Graph". MathWorld .

Related Research Articles

In combinatorial mathematics, an expander graph is a sparse graph that has strong connectivity properties, quantified using vertex, edge or spectral expansion. Expander constructions have spawned research in pure and applied mathematics, with several applications to complexity theory, design of robust computer networks, and the theory of error-correcting codes.

Power set Mathematical set containing all subsets of a given set

In mathematics, the power set of a set S is the set of all subsets of S, including the empty set and S itself. In axiomatic set theory, the existence of the power set of any set is postulated by the axiom of power set. The powerset of S is variously denoted as P(S), 𝒫(S), P(S), , ℘(S), or 2S. The notation 2S, meaning the set of all functions from S to a given set of two elements, is used because the powerset of S can be identified with, equivalent to, or bijective to the set of all the functions from S to the given two elements set.

Tree (graph theory) Undirected, connected and acyclic graph

In graph theory, a tree is an undirected graph in which any two vertices are connected by exactly one path, or equivalently a connected acyclic undirected graph. A forest is an undirected graph in which any two vertices are connected by at most one path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees.

Complete graph Graph in which every two vertices are adjacent

In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices is connected by a pair of unique edges.

Petersen graph Cubic graph with 10 vertices and 15 edges

In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring.

Directed acyclic graph Directed graph with no directed cycles

In mathematics, particularly graph theory, and computer science, a directed acyclic graph is a directed graph with no directed cycles. That is, it consists of vertices and edges, with each edge directed from one vertex to another, such that following those directions will never form a closed loop. A directed graph is a DAG if and only if it can be topologically ordered, by arranging the vertices as a linear ordering that is consistent with all edge directions. DAGs have numerous scientific and computational applications, ranging from biology to sociology to computation (scheduling).

In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph.

Informally, the reconstruction conjecture in graph theory says that graphs are determined uniquely by their subgraphs. It is due to Kelly and Ulam.

In graph theory, a branch of mathematics, the (binary) cycle space of an undirected graph is the set of its even-degree subgraphs.

This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges.

Graph (discrete mathematics) Vertices connected in pairs by edges

In mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called vertices and each of the related pairs of vertices is called an edge. Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges. Graphs are one of the objects of study in discrete mathematics.

Random graph Graph generated by a random process

In mathematics, random graph is the general term to refer to probability distributions over graphs. Random graphs may be described simply by a probability distribution, or by a random process which generates them. The theory of random graphs lies at the intersection between graph theory and probability theory. From a mathematical perspective, random graphs are used to answer questions about the properties of typical graphs. Its practical applications are found in all areas in which complex networks need to be modeled – many random graph models are thus known, mirroring the diverse types of complex networks encountered in different areas. In a mathematical context, random graph refers almost exclusively to the Erdős–Rényi random graph model. In other contexts, any graph model may be referred to as a random graph.

In mathematics, an incidence matrix is a logical matrix that shows the relationship between two classes of objects, usually called an incidence relation. If the first class is X and the second is Y, the matrix has one row for each element of X and one column for each element of Y. The entry in row x and column y is 1 if x and y are related and 0 if they are not. There are variations; see below.

Complement graph Graph with same nodes but opposite connections as another

In the mathematical field of graph theory, the complement or inverse of a graph G is a graph H on the same vertices such that two distinct vertices of H are adjacent if and only if they are not adjacent in G. That is, to generate the complement of a graph, one fills in all the missing edges required to form a complete graph, and removes all the edges that were previously there.

Cograph Graph formed by complementation and disjoint union

In graph theory, a cograph, or complement-reducible graph, or P4-free graph, is a graph that can be generated from the single-vertex graph K1 by complementation and disjoint union. That is, the family of cographs is the smallest class of graphs that includes K1 and is closed under complementation and disjoint union.

Chromatic polynomial Function in algebraic graph theory

The chromatic polynomial is a graph polynomial studied in algebraic graph theory, a branch of mathematics. It counts the number of graph colorings as a function of the number of colors and was originally defined by George David Birkhoff to study the four color problem. It was generalised to the Tutte polynomial by Hassler Whitney and W. T. Tutte, linking it to the Potts model of statistical physics.

Convex polytope Convex hull of a finite set of points in a Euclidean space

A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary.

Rado graph Infinite graph containing all countable graphs

In the mathematical field of graph theory, the Rado graph, Erdős–Rényi graph, or random graph is a countably infinite graph that can be constructed by choosing independently at random for each pair of its vertices whether to connect the vertices by an edge. The names of this graph honor Richard Rado, Paul Erdős, and Alfréd Rényi, mathematicians who studied it in the early 1960s; it appears even earlier in the work of Wilhelm Ackermann (1937). The Rado graph can also be constructed non-randomly, by symmetrizing the membership relation of the hereditarily finite sets, by applying the BIT predicate to the binary representations of the natural numbers, or as an infinite Paley graph that has edges connecting pairs of prime numbers congruent to 1 mod 4 that are quadratic residues modulo each other.

Schläfli graph

In the mathematical field of graph theory, the Schläfli graph, named after Ludwig Schläfli, is a 16-regular undirected graph with 27 vertices and 216 edges. It is a strongly regular graph with parameters srg(27, 16, 10, 8).

Universal vertex

In graph theory, a universal vertex is a vertex of an undirected graph that is adjacent to all other vertices of the graph. It may also be called a dominating vertex, as it forms a one-element dominating set in the graph.

References