In graph drawing and geometric graph theory, a Tutte embedding or barycentric embedding of a simple, 3-vertex-connected, planar graph is a crossing-free straight-line embedding with the properties that the outer face is a convex polygon and that each interior vertex is at the average (or barycenter) of its neighbors' positions. If the outer polygon is fixed, this condition on the interior vertices determines their position uniquely as the solution to a system of linear equations. Solving the equations geometrically produces a planar embedding. Tutte's spring theorem, proven by W. T.Tutte ( 1963 ), states that this unique solution is always crossing-free, and more strongly that every face of the resulting planar embedding is convex. [1] It is called the spring theorem because such an embedding can be found as the equilibrium position for a system of springs representing the edges of the graph.
Let G be the graph of a cube, and (selecting one of its quadrilateral faces as the outer face) fix the four vertices of the outer face at the four corners of a unit square, the points whose x and y coordinates are all four combinations of zero and one. Then, if the remaining four vertices are placed at the four points whose x and y coordinates are combinations of 1/3 and 2/3, as in the figure, the result will be a Tutte embedding. For, at each interior vertex v of the embedding, and for each of the two coordinates, the three neighbors of v have coordinate values that are equal to v, smaller by 1/3, and larger by 1/3; the average of these values is the same as the coordinate value of v itself.
The condition that a vertex v be at the average of its neighbors' positions may be expressed as two linear equations, one for the x coordinate of v and another for the y coordinate of v. For a graph with n vertices, h of which are fixed in position on the outer face, there are two equations for each interior vertex and also two unknowns (the coordinates) for each interior vertex. Therefore, this gives a system of linear equations with 2(n − h) equations in 2(n − h) unknowns, the solution to which is a Tutte embedding. As Tutte (1963) showed, for 3-vertex-connected planar graphs, this system is non-degenerate. Therefore, it has a unique solution, and (with the outer face fixed) the graph has a unique Tutte embedding. This embedding can be found in polynomial time by solving the system of equations, for instance by using Gaussian elimination. [2]
By Steinitz's theorem, the 3-connected planar graphs to which Tutte's spring theorem applies coincide with the polyhedral graphs, the graphs formed by the vertices and edges of a convex polyhedron. According to the Maxwell–Cremona correspondence, a two-dimensional embedding of a planar graph forms the vertical projection of a three-dimensional convex polyhedron if and only if the embedding has an equilibrium stress, an assignment of forces to each edge (affecting both endpoints in equal and opposite directions parallel to the edge) such that the forces cancel at every vertex. For a Tutte embedding, assigning to each edge an attractive force proportional to its length (like a spring) makes the forces cancel at all interior vertices, but this is not necessarily an equilibrium stress at the vertices of the outer polygon. However, when the outer polygon is a triangle, it is possible to assign repulsive forces to its three edges to make the forces cancel there, too. In this way, Tutte embeddings can be used to find Schlegel diagrams of every convex polyhedron. For every 3-connected planar graph G, either G itself or the dual graph of G has a triangle, so either this gives a polyhedral representation of G or of its dual; in the case that the dual graph is the one with the triangle, polarization gives a polyhedral representation of G itself. [2]
In geometry processing, Tutte's embedding is used for 2D uv-parametrization of 3D surfaces most commonly for the cases where the topology of the surface remains the same across and (disk topology). Tutte's method minimizes the total distortion energy of the parametrized space by considering each transformed vertex as a point mass, and edges across the corresponding vertices as springs. The tightness of each spring is determined by the length of the edges in the original 3D surface to preserve the shape. Since it is reasonable to have smaller parametrized edge lengths for the smaller edges of , and larger parametrized edge lengths for the larger edges of , the spring constants are usually taken as the inverse of the absolute distance between the vertices in the 3D space.
where represents the set of edges in the original 3D surface. When the weights are positive (as is the case above), it is guaranteed that the mapping is bijective without any inversions. But when no further constraints are applied, the solution that minimizes the distortion energy trivially collapses to a single point in the parametrized space.
Therefore, one must provide boundary conditions where a set of known vertices of the 3D surface are mapped to known points in the 2D parametrized space. One common way of choosing such boundary conditions is to consider the vertices on the largest boundary loop of the original 3D surface which can be then constrained to be mapped to the outer ring of a unit disk in the 2D parametrized space. Note that if the 3D surface is a manifold, the boundary edges can be detected by verifying that they belong to only one face of the mesh.
Applications of parametrization in graphics and animation include texture mapping, among many others.
Colin de Verdière (1991) generalized Tutte's spring theorem to graphs on higher-genus surfaces with non-positive curvature, where edges are represented by geodesics; [3] this result was later independently rediscovered by Hass & Scott (2015). [4] Analogous results for graphs embedded on a torus were independently proved by Delgado-Friedrichs (2005), [5] by Gortler, Gotsman & Thurston (2006), [6] and by Lovász (2019). [7]
Chilakamarri, Dean & Littman (1995) investigate three-dimensional graph embeddings of the graphs of four-dimensional polytopes, formed by the same method as Tutte's embedding: choose one facet of the polytope as being the outer face of a three-dimensional embedding, and fix its vertices into place as the vertices of a three-dimensional polyhedron in space. Let each remaining vertex of the polytope be free to move in space, and replace each edge of the polytope by a spring. Then, find the minimum-energy configuration of the system of springs. As they show, the system of equations obtained in this way is again non-degenerate, but it is unclear under what conditions this method will find an embedding that realizes all facets of the polytope as convex polyhedra. [8]
The result that every simple planar graph can be drawn with straight line edges is called Fáry's theorem. [9] The Tutte spring theorem proves this for 3-connected planar graphs, but the result is true more generally for planar graphs regardless of connectivity. Using the Tutte spring system for a graph that is not 3-connected may result in degeneracies, in which subgraphs of the given graph collapse onto a point or a line segment; however, an arbitrary planar graph may be drawn using the Tutte embedding by adding extra edges to make it 3-connected, drawing the resulting 3-connected graph, and then removing the extra edges.
A graph is k-vertex-connected, but not necessarily planar, if and only if it has a convex embedding into (k −1)-dimensional space in which an arbitrary k-tuple of vertices are placed at the vertices of a simplex and, for each remaining vertex v, the convex hull of the neighbors of v is full-dimensional with v in its interior. If such an embedding exists, one can be found by fixing the locations of the chosen k vertices and solving a system of equations that places each vertex at the average of its neighbors, just as in Tutte's planar embedding. [10]
In finite element mesh generation, Laplacian smoothing is a common method for postprocessing a generated mesh to improve the quality of its elements; [11] it is particularly popular for quadrilateral meshes, for which other methods such as Lloyd's algorithm for triangular mesh smoothing are less applicable. In this method, each vertex is moved to or towards the average of its neighbors' positions, but this motion is only performed for a small number of iterations, to avoid large distortions of element sizes or (in the case of non-convex mesh domains) tangled non-planar meshes.
Force-directed graph drawing systems continue to be a popular method for visualizing graphs, but these systems typically use more complicated systems of forces that combine attractive forces on graph edges (as in Tutte's embedding) with repulsive forces between arbitrary pairs of vertices. These additional forces may cause the system to have many locally stable configurations rather than, as in Tutte's embedding, a single global solution. [12]
In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all can also be constructed as geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron.
In geometry, a polyhedron is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices.
In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph or planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.
In order theory, a Hasse diagram is a type of mathematical diagram used to represent a finite partially ordered set, in the form of a drawing of its transitive reduction. Concretely, for a partially ordered set one represents each element of as a vertex in the plane and draws a line segment or curve that goes upward from one vertex to another vertex whenever covers . These curves may cross each other but must not touch any vertices other than their endpoints. Such a diagram, with labeled vertices, uniquely determines its partial order.
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary.
In the mathematical discipline of graph theory, the dual graph of a planar graph G is a graph that has a vertex for each face of G. The dual graph has an edge for each pair of faces in G that are separated from each other by an edge, and a self-loop when the same face appears on both sides of an edge. Thus, each edge e of G has a corresponding dual edge, whose endpoints are the dual vertices corresponding to the faces on either side of e. The definition of the dual depends on the choice of embedding of the graph G, so it is a property of plane graphs rather than planar graphs. For planar graphs generally, there may be multiple dual graphs, depending on the choice of planar embedding of the graph.
In graph theory, Schnyder's theorem is a characterization of planar graphs in terms of the order dimension of their incidence posets. It is named after Walter Schnyder, who published its proof in 1989.
Geometric graph theory in the broader sense is a large and amorphous subfield of graph theory, concerned with graphs defined by geometric means. In a stricter sense, geometric graph theory studies combinatorial and geometric properties of geometric graphs, meaning graphs drawn in the Euclidean plane with possibly intersecting straight-line edges, and topological graphs, where the edges are allowed to be arbitrary continuous curves connecting the vertices; thus, it can be described as "the theory of geometric and topological graphs". Geometric graphs are also known as spatial networks.
In the mathematical field of graph theory, Fáry's theorem states that any simple, planar graph can be drawn without crossings so that its edges are straight line segments. That is, the ability to draw graph edges as curves instead of as straight line segments does not allow a larger class of graphs to be drawn. The theorem is named after István Fáry, although it was proved independently by Klaus Wagner (1936), Fáry (1948), and Sherman K. Stein (1951).
In graph theory, a connected graph G is said to be k-vertex-connected if it has more than k vertices and remains connected whenever fewer than k vertices are removed.
In geometry, an edge is a particular type of line segment joining two vertices in a polygon, polyhedron, or higher-dimensional polytope. In a polygon, an edge is a line segment on the boundary, and is often called a polygon side. In a polyhedron or more generally a polytope, an edge is a line segment where two faces meet. A segment joining two vertices while passing through the interior or exterior is not an edge but instead is called a diagonal.
The circle packing theorem describes the possible tangency relations between circles in the plane whose interiors are disjoint. A circle packing is a connected collection of circles whose interiors are disjoint. The intersection graph of a circle packing is the graph having a vertex for each circle, and an edge for every pair of circles that are tangent. If the circle packing is on the plane, or, equivalently, on the sphere, then its intersection graph is called a coin graph; more generally, intersection graphs of interior-disjoint geometric objects are called tangency graphs or contact graphs. Coin graphs are always connected, simple, and planar. The circle packing theorem states that these are the only requirements for a graph to be a coin graph:
Polyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes.
In polyhedral combinatorics, a branch of mathematics, Steinitz's theorem is a characterization of the undirected graphs formed by the edges and vertices of three-dimensional convex polyhedra: they are exactly the 3-vertex-connected planar graphs. That is, every convex polyhedron forms a 3-connected planar graph, and every 3-connected planar graph can be represented as the graph of a convex polyhedron. For this reason, the 3-connected planar graphs are also known as polyhedral graphs.
In geometric graph theory, a branch of mathematics, a polyhedral graph is the undirected graph formed from the vertices and edges of a convex polyhedron. Alternatively, in purely graph-theoretic terms, the polyhedral graphs are the 3-vertex-connected, planar graphs.
In graph theory, a branch of mathematics, the Herschel graph is a bipartite undirected graph with 11 vertices and 18 edges. It is a polyhedral graph, and is the smallest polyhedral graph that does not have a Hamiltonian cycle, a cycle passing through all its vertices. It is named after British astronomer Alexander Stewart Herschel, because of Herschel's studies of Hamiltonian cycles in polyhedral graphs.
In polyhedral combinatorics, a branch of mathematics, Balinski's theorem is a statement about the graph-theoretic structure of three-dimensional convex polyhedra and higher-dimensional convex polytopes. It states that, if one forms an undirected graph from the vertices and edges of a convex d-dimensional convex polyhedron or polytope, then the resulting graph is at least d-vertex-connected: the removal of any d − 1 vertices leaves a connected subgraph. For instance, for a three-dimensional polyhedron, even if two of its vertices are removed, for any pair of vertices there will still exist a path of vertices and edges connecting the pair.
Barnette's conjecture is an unsolved problem in graph theory, a branch of mathematics, concerning Hamiltonian cycles in graphs. It is named after David W. Barnette, a professor emeritus at the University of California, Davis; it states that every bipartite polyhedral graph with three edges per vertex has a Hamiltonian cycle.
In combinatorial mathematics, an Apollonian network is an undirected graph formed by a process of recursively subdividing a triangle into three smaller triangles. Apollonian networks may equivalently be defined as the planar 3-trees, the maximal planar chordal graphs, the uniquely 4-colorable planar graphs, and the graphs of stacked polytopes. They are named after Apollonius of Perga, who studied a related circle-packing construction.
In geometric graph theory, a convex embedding of a graph is an embedding of the graph into a Euclidean space, with its vertices represented as points and its edges as line segments, so that all of the vertices outside a specified subset belong to the convex hull of their neighbors. More precisely, if is a subset of the vertices of the graph, then a convex -embedding embeds the graph in such a way that every vertex either belongs to or is placed within the convex hull of its neighbors. A convex embedding into -dimensional Euclidean space is said to be in general position if every subset of its vertices spans a subspace of dimension .