Genus of a quadratic form

Last updated

In mathematics, the genus is a classification of quadratic forms and lattices over the ring of integers.

Contents

An integral quadratic form is a quadratic form on Zn, or equivalently a free Z-module of finite rank. Two such forms are in the same genus if they are equivalent over the local rings Zp for each prime p and also equivalent over R.

Equivalent forms are in the same genus, but the converse does not hold. For example, x2 + 82y2 and 2x2 + 41y2 are in the same genus but not equivalent over Z.

Forms in the same genus have equal discriminant and hence there are only finitely many equivalence classes in a genus.

The Smith–Minkowski–Siegel mass formula gives the weight or mass of the quadratic forms in a genus, the count of equivalence classes weighted by the reciprocals of the orders of their automorphism groups.

In mathematics, the Smith–Minkowski–Siegel mass formula is a formula for the sum of the weights of the lattices in a genus, weighted by the reciprocals of the orders of their automorphism groups. The mass formula is often given for integral quadratic forms, though it can be generalized to quadratic forms over any algebraic number field.

Binary quadratic forms

For binary quadratic forms there is a group structure on the set C equivalence classes of forms with given discriminant. The genera are defined by the generic characters. The principal genus, the genus containing the principal form, is precisely the subgroup C2 and the genera are the cosets of C2: so in this case all genera contain the same number of classes of forms.

In mathematics, a binary quadratic form is a quadratic homogeneous polynomial in two variables

See also

Related Research Articles

Equivalence relation reflexive, symmetric and transitive relation

In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The relation "is equal to" is the canonical example of an equivalence relation, where for any objects a, b, and c:

Equivalence class mathematical concept

In mathematics, when the elements of some set S have a notion of equivalence defined on them, then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a and b belong to the same equivalence class if and only if a and b are equivalent.

In algebra, the discriminant of a polynomial is a polynomial function of its coefficients, which allows deducing some properties of the roots without computing them. For example, the discriminant of the quadratic polynomial

In mathematics, a unique factorization domain (UFD) is an integral domain in which every non-zero non-unit element can be written as a product of prime elements, uniquely up to order and units, analogous to the fundamental theorem of arithmetic for the integers. UFDs are sometimes called factorial rings, following the terminology of Bourbaki.

In number theory, the ideal class group of an algebraic number field K is the quotient group JK/PK where JK is the group of fractional ideals of the ring of integers of K, and PK is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of K. The order of the group, which is finite, is called the class number of K.

Algebraic number theory major branch of number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient groups of group theory and the quotient spaces of linear algebra. One starts with a ring R and a two-sided ideal I in R, and constructs a new ring, the quotient ring R / I, whose elements are the cosets of I in R subject to special + and operations.

In mathematics, a quadratic form is a polynomial with terms all of degree two. For example,

In mathematics, a quadratic irrational number is an irrational number that is the solution to some quadratic equation with rational coefficients which is irreducible over the set of rational numbers. Since fractions in the coefficients of a quadratic equation can be cleared by multiplying both sides by their common denominator, a quadratic irrational is an irrational root of some quadratic equation whose coefficients are integers. The quadratic irrational numbers, a subset of the complex numbers, are algebraic numbers of degree 2, and can therefore be expressed as

In mathematics, the Brauer group of a field K is an abelian group whose elements are Morita equivalence classes of central simple algebras over K, with addition given by the tensor product of algebras. It was defined by the algebraist Richard Brauer.

In ring theory and related areas of mathematics a central simple algebra (CSA) over a field K is a finite-dimensional associative algebra A, which is simple, and for which the center is exactly K. As an example, note that any simple algebra is a central simple algebra over its center.

In geometric topology, a field within mathematics, the obstruction to a homotopy equivalence of finite CW-complexes being a simple homotopy equivalence is its Whitehead torsion which is an element in the Whitehead group . These concepts are named after the mathematician J. H. C. Whitehead.

In mathematics, the canonical bundle of a non-singular algebraic variety of dimension over a field is the line bundle , which is the nth exterior power of the cotangent bundle Ω on V.

In mathematics, a quaternion algebra over a field F is a central simple algebra A over F that has dimension 4 over F. Every quaternion algebra becomes the matrix algebra by extending scalars, i.e. for a suitable field extension K of F, is isomorphic to the 2×2 matrix algebra over K.

In mathematics, intersection theory is a branch of algebraic geometry, where subvarieties are intersected on an algebraic variety, and of algebraic topology, where intersections are computed within the cohomology ring. The theory for varieties is older, with roots in Bézout's theorem on curves and elimination theory. On the other hand, the topological theory more quickly reached a definitive form.

In algebraic geometry, the Chow groups of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general.

In mathematics, a Witt group of a field, named after Ernst Witt, is an abelian group whose elements are represented by symmetric bilinear forms over the field.

In mathematics, an algebraic number fieldF is a finite degree field extension of the field of rational numbers Q. Thus F is a field that contains Q and has finite dimension when considered as a vector space over Q.

In mathematics, the spinor genus is a classification of quadratic forms and lattices over the ring of integers, introduced by Martin Eichler. It refines the genus but may be coarser than proper equivalence

References

John William Scott "Ian" Cassels, FRS was a British mathematician.

Academic Press is an academic book publisher. Originally independent, it was acquired by Harcourt, Brace & World in 1969. Reed Elsevier bought Harcourt in 2000, and Academic Press is now an imprint of Elsevier.

International Standard Book Number Unique numeric book identifier

The International Standard Book Number (ISBN) is a numeric commercial book identifier which is intended to be unique. Publishers purchase ISBNs from an affiliate of the International ISBN Agency.

Michiel Hazewinkel Dutch mathematician

Michiel Hazewinkel is a Dutch mathematician, and Emeritus Professor of Mathematics at the Centre for Mathematics and Computer and the University of Amsterdam, particularly known for his 1978 book Formal groups and applications and as editor of the Encyclopedia of Mathematics.

<i>Encyclopedia of Mathematics</i> encyclopedia translated from the Soviet Matematicheskaya entsiklopediya (1977), published by Ky Kluwer Academic Publishers until 2003.

The Encyclopedia of Mathematics is a large reference work in mathematics. It is available in book form and on CD-ROM.