Number line

Last updated
The order of the natural numbers shown on the number line Number line with x smaller than y.svg
The order of the natural numbers shown on the number line

In elementary mathematics, a number line is a picture of a graduated straight line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real number to a point. [1]

Contents

The integers are often shown as specially-marked points evenly spaced on the line. Although the image only shows the integers from –3 to 3, the line includes all real numbers, continuing forever in each direction, and also numbers that are between the integers. It is often used as an aid in teaching simple addition and subtraction, especially involving negative numbers.

In advanced mathematics, the number line can be called the real line or real number line, formally defined as the set R of all real numbers. It is viewed as a geometric space, namely the real coordinate space of dimension one, or the Euclidean space of dimension one – the Euclidean line. It can also be thought of as a vector space (or affine space), a metric space, a topological space, a measure space, or a linear continuum.

Just like the set of real numbers, the real line is usually denoted by the symbol R (or alternatively, , the letter "R" in blackboard bold). However, it is sometimes denoted R1 or E1 in order to emphasize its role as the first real space or first Euclidean space.

History

The first mention of the number line used for operation purposes is found in John Wallis's Treatise of algebra. [2] In his treatise, Wallis describes addition and subtraction on a number line in terms of moving forward and backward, under the metaphor of a person walking.

An earlier depiction without mention to operations, though, is found in John Napier's A description of the admirable table of logarithmes, which shows values 1 through 12 lined up from left to right. [3]

Contrary to popular belief, Rene Descartes's original La Géométrie does not feature a number line, defined as we use it today, though it does use a coordinate system. In particular, Descartes's work does not contain specific numbers mapped onto lines, only abstract quantities. [4]

Drawing the number line

A number line is usually represented as being horizontal, but in a Cartesian coordinate plane the vertical axis (y-axis) is also a number line. [5] According to one convention, positive numbers always lie on the right side of zero, negative numbers always lie on the left side of zero, and arrowheads on both ends of the line are meant to suggest that the line continues indefinitely in the positive and negative directions. Another convention uses only one arrowhead which indicates the direction in which numbers grow. [5] The line continues indefinitely in the positive and negative directions according to the rules of geometry which define a line without endpoints as an infinite line, a line with one endpoint as a ray, and a line with two endpoints as a line segment.

Comparing numbers

If a particular number is farther to the right on the number line than is another number, then the first number is greater than the second (equivalently, the second is less than the first). The distance between them is the magnitude of their differencethat is, it measures the first number minus the second one, or equivalently the absolute value of the second number minus the first one. Taking this difference is the process of subtraction.

Thus, for example, the length of a line segment between 0 and some other number represents the magnitude of the latter number.

Two numbers can be added by "picking up" the length from 0 to one of the numbers, and putting it down again with the end that was 0 placed on top of the other number.

Two numbers can be multiplied as in this example: To multiply 5 × 3, note that this is the same as 5 + 5 + 5, so pick up the length from 0 to 5 and place it to the right of 5, and then pick up that length again and place it to the right of the previous result. This gives a result that is 3 combined lengths of 5 each; since the process ends at 15, we find that 5 × 3 = 15.

Division can be performed as in the following example: To divide 6 by 2that is, to find out how many times 2 goes into 6note that the length from 0 to 2 lies at the beginning of the length from 0 to 6; pick up the former length and put it down again to the right of its original position, with the end formerly at 0 now placed at 2, and then move the length to the right of its latest position again. This puts the right end of the length 2 at the right end of the length from 0 to 6. Since three lengths of 2 filled the length 6, 2 goes into 6 three times (that is, 6 ÷ 2 = 3).

Portions of the number line

The closed interval [a,b]. Intervalo real 04.svg
The closed interval [a,b].

The section of the number line between two numbers is called an interval. If the section includes both numbers it is said to be a closed interval, while if it excludes both numbers it is called an open interval. If it includes one of the numbers but not the other one, it is called a half-open interval.

All the points extending forever in one direction from a particular point are together known as a ray. If the ray includes the particular point, it is a closed ray; otherwise it is an open ray.

Extensions of the concept

Logarithmic scale

A log-log plot of y = x (blue), y = x (green), and y = x (red).
Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. LogLog exponentials.svg
A log-log plot of y = x (blue), y = x (green), and y = x (red).
Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1.

On the number line, the distance between two points is the unit length if and only if the difference of the represented numbers equals 1. Other choices are possible.

One of the most common choices is the logarithmic scale, which is a representation of the positive numbers on a line, such that the distance of two points is the unit length, if the ratio of the represented numbers has a fixed value, typically 10. In such a logarithmic scale, the origin represents 1; one inch to the right, one has 10, one inch to the right of 10 one has 10×10 = 100, then 10×100 = 1000 = 103, then 10×1000 = 10,000 = 104, etc. Similarly, one inch to the left of 1, one has 1/10 = 10–1, then 1/100 = 10–2, etc.

This approach is useful, when one wants to represent, on the same figure, values with very different order of magnitude. For example, one requires a logarithmic scale for representing simultaneously the size of the different bodies that exist in the Universe, typically, a photon, an electron, an atom, a molecule, a human, the Earth, the Solar System, a galaxy, and the visible Universe.

Logarithmic scales are used in slide rules for multiplying or dividing numbers by adding or subtracting lengths on logarithmic scales.

The two logarithmic scales of a slide rule Slide rule example3.svg
The two logarithmic scales of a slide rule

Combining number lines

A line drawn through the origin at right angles to the real number line can be used to represent the imaginary numbers. This line, called imaginary line, extends the number line to a complex number plane, with points representing complex numbers.

Alternatively, one real number line can be drawn horizontally to denote possible values of one real number, commonly called x, and another real number line can be drawn vertically to denote possible values of another real number, commonly called y. Together these lines form what is known as a Cartesian coordinate system, and any point in the plane represents the value of a pair of real numbers. Further, the Cartesian coordinate system can itself be extended by visualizing a third number line "coming out of the screen (or page)", measuring a third variable called z. Positive numbers are closer to the viewer's eyes than the screen is, while negative numbers are "behind the screen"; larger numbers are farther from the screen. Then any point in the three-dimensional space that we live in represents the values of a trio of real numbers.

Advanced concepts

As a linear continuum

Each set on the real number line has a supremum. Illustration of supremum.svg
Each set on the real number line has a supremum.

The real line is a linear continuum under the standard < ordering. Specifically, the real line is linearly ordered by <, and this ordering is dense and has the least-upper-bound property.

In addition to the above properties, the real line has no maximum or minimum element. It also has a countable dense subset, namely the set of rational numbers. It is a theorem that any linear continuum with a countable dense subset and no maximum or minimum element is order-isomorphic to the real line.

The real line also satisfies the countable chain condition: every collection of mutually disjoint, nonempty open intervals in R is countable. In order theory, the famous Suslin problem asks whether every linear continuum satisfying the countable chain condition that has no maximum or minimum element is necessarily order-isomorphic to R. This statement has been shown to be independent of the standard axiomatic system of set theory known as ZFC.

As a metric space

The metric on the real line is absolute difference. Absolute difference.svg
The metric on the real line is absolute difference.
An e-ball around a number a Epsilon Umgebung.svg
An ε-ball around a number a

The real line forms a metric space, with the distance function given by absolute difference:

The metric tensor is clearly the 1-dimensional Euclidean metric. Since the n-dimensional Euclidean metric can be represented in matrix form as the n-by-n identity matrix, the metric on the real line is simply the 1-by-1 identity matrix, i.e. 1.

If pR and ε > 0, then the ε-ball in R centered at p is simply the open interval (pε, p + ε).

This real line has several important properties as a metric space:

As a topological space

The real line can be compactified by adding a point at infinity. Real Projective Line (RP1).png
The real line can be compactified by adding a point at infinity.

The real line carries a standard topology, which can be introduced in two different, equivalent ways. First, since the real numbers are totally ordered, they carry an order topology. Second, the real numbers inherit a metric topology from the metric defined above. The order topology and metric topology on R are the same. As a topological space, the real line is homeomorphic to the open interval (0, 1).

The real line is trivially a topological manifold of dimension 1. Up to homeomorphism, it is one of only two different connected 1-manifolds without boundary, the other being the circle. It also has a standard differentiable structure on it, making it a differentiable manifold. (Up to diffeomorphism, there is only one differentiable structure that the topological space supports.)

The real line is a locally compact space and a paracompact space, as well as second-countable and normal. It is also path-connected, and is therefore connected as well, though it can be disconnected by removing any one point. The real line is also contractible, and as such all of its homotopy groups and reduced homology groups are zero.

As a locally compact space, the real line can be compactified in several different ways. The one-point compactification of R is a circle (namely, the real projective line), and the extra point can be thought of as an unsigned infinity. Alternatively, the real line has two ends, and the resulting end compactification is the extended real line [−∞, +∞]. There is also the Stone–Čech compactification of the real line, which involves adding an infinite number of additional points.

In some contexts, it is helpful to place other topologies on the set of real numbers, such as the lower limit topology or the Zariski topology. For the real numbers, the latter is the same as the finite complement topology.

As a vector space

The bijection between points on the real line and vectors Bijection between vectors and points on number line.svg
The bijection between points on the real line and vectors

The real line is a vector space over the field R of real numbers (that is, over itself) of dimension 1. It has the usual multiplication as an inner product, making it a Euclidean vector space. The norm defined by this inner product is simply the absolute value.

As a measure space

The real line carries a canonical measure, namely the Lebesgue measure. This measure can be defined as the completion of a Borel measure defined on R, where the measure of any interval is the length of the interval.

Lebesgue measure on the real line is one of the simplest examples of a Haar measure on a locally compact group.

In real algebras

When A is a unital real algebra, the products of real numbers with 1 is a real line within the algebra. For example, in the complex plane z = x + iy, the subspace {z : y = 0} is a real line. Similarly, the algebra of quaternions

q = w + x i + y j + z k

has a real line in the subspace {q : x = y = z = 0 }.

When the real algebra is a direct sum then a conjugation on A is introduced by the mapping of subspace V. In this way the real line consists of the fixed points of the conjugation.

For a dimension n, the square matrices form a ring that has a real line in the form of real products with the identity matrix in the ring.

See also

Related Research Articles

<span class="mw-page-title-main">Compact space</span> Type of mathematical space

In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers is not compact either, because it excludes the two limiting values and . However, the extended real number linewould be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces.

In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and introduced by German mathematician Georg Cantor in 1883.

In mathematical analysis, a metric space M is called complete if every Cauchy sequence of points in M has a limit that is also in M.

<span class="mw-page-title-main">Euclidean space</span> Fundamental space of geometry

Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension n, which are called Euclidean n-spaces when one wants to specify their dimension. For n equal to one or two, they are commonly called respectively Euclidean lines and Euclidean planes. The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics.

In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean n-spaces. For lower dimensions n = 1, 2, or 3, it coincides with the standard measure of length, area, or volume. In general, it is also called n-dimensional volume, n-volume, hypervolume, or simply volume. It is used throughout real analysis, in particular to define Lebesgue integration. Sets that can be assigned a Lebesgue measure are called Lebesgue-measurable; the measure of the Lebesgue-measurable set A is here denoted by λ(A).

<span class="mw-page-title-main">Metric space</span> Mathematical space with a notion of distance

In mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry.

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

<span class="mw-page-title-main">Open set</span> Basic subset of a topological space

In mathematics, an open set is a generalization of an open interval in the real line.

In mathematics, a (real) interval is the set of all real numbers lying between two fixed endpoints with no "gaps". Each endpoint is either a real number or positive or negative infinity, indicating the interval extends without a bound. An interval can contain neither endpoint, either endpoint, or both endpoints.

In mathematics, the unit interval is the closed interval [0,1], that is, the set of all real numbers that are greater than or equal to 0 and less than or equal to 1. It is often denoted I. In addition to its role in real analysis, the unit interval is used to study homotopy theory in the field of topology.

In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a discontinuous sequence, meaning they are isolated from each other in a certain sense. The discrete topology is the finest topology that can be given on a set. Every subset is open in the discrete topology so that in particular, every singleton subset is an open set in the discrete topology.

<span class="mw-page-title-main">General topology</span> Branch of topology

In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology.

In mathematics, a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space X that is finite on all compact sets, outer regular on all Borel sets, and inner regular on open sets. These conditions guarantee that the measure is "compatible" with the topology of the space, and most measures used in mathematical analysis and in number theory are indeed Radon measures.

In mathematics, the magnitude or size of a mathematical object is a property which determines whether the object is larger or smaller than other objects of the same kind. More formally, an object's magnitude is the displayed result of an ordering of the class of objects to which it belongs.

In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the Euclidean distance in a Euclidean space is defined by a norm on the associated Euclidean vector space, called the Euclidean norm, the 2-norm, or, sometimes, the magnitude of the vector. This norm can be defined as the square root of the inner product of a vector with itself.

<span class="mw-page-title-main">Real coordinate space</span> Space formed by the n-tuples of real numbers

In mathematics, the real coordinate space of dimension n, denoted Rn or , is the set of the n-tuples of real numbers, that is the set of all sequences of n real numbers. Special cases are called the real lineR1 and the real coordinate planeR2. With component-wise addition and scalar multiplication, it is a real vector space, and its elements are called coordinate vectors.

<span class="mw-page-title-main">Manifold</span> Topological space that locally resembles Euclidean space

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space.

In topology, a branch of mathematics, a topological manifold is a topological space that locally resembles real n-dimensional Euclidean space. Topological manifolds are an important class of topological spaces, with applications throughout mathematics. All manifolds are topological manifolds by definition. Other types of manifolds are formed by adding structure to a topological manifold. Every manifold has an "underlying" topological manifold, obtained by simply "forgetting" the added structure. However, not every topological manifold can be endowed with a particular additional structure. For example, the E8 manifold is a topological manifold which cannot be endowed with a differentiable structure.

<span class="mw-page-title-main">Space (mathematics)</span> Mathematical set with some added structure

In mathematics, a space is a set with some added structure. While modern mathematics uses many types of spaces, such as Euclidean spaces, linear spaces, topological spaces, Hilbert spaces, or probability spaces, it does not define the notion of "space" itself.

References

  1. Stewart, James B.; Redlin, Lothar; Watson, Saleem (2008). College Algebra (5th ed.). Brooks Cole. pp. 13–19. ISBN   978-0-495-56521-5.
  2. Wallis, John (1685). Treatise of algebra. http://lhldigital.lindahall.org/cdm/ref/collection/math/id/11231 pp. 265
  3. Napier, John (1616). A description of the admirable table of logarithmes https://www.math.ru.nl/werkgroepen/gmfw/bronnen/napier1.html
  4. Núñez, Rafael (2017). How Much Mathematics Is "Hardwired", If Any at All Minnesota Symposia on Child Psychology: Culture and Developmental Systems, Volume 38. http://www.cogsci.ucsd.edu/~nunez/COGS152_Readings/Nunez_ch3_MN.pdf pp. 98
  5. 1 2 Introduction to the x,y-plane Archived 2015-11-09 at the Wayback Machine "Purplemath" Retrieved 2015-11-13

Further reading