Countable chain condition

Last updated

In order theory, a partially ordered set X is said to satisfy the countable chain condition, or to be ccc, if every strong antichain in X is countable.

Contents

Overview

There are really two conditions: the upwards and downwards countable chain conditions. These are not equivalent. The countable chain condition means the downwards countable chain condition, in other words no two elements have a common lower bound.

This is called the "countable chain condition" rather than the more logical term "countable antichain condition" for historical reasons related to certain chains of open sets in topological spaces and chains in complete Boolean algebras, where chain conditions sometimes happen to be equivalent to antichain conditions. For example, if κ is a cardinal, then in a complete Boolean algebra every antichain has size less than κ if and only if there is no descending κ-sequence of elements, so chain conditions are equivalent to antichain conditions.

Partial orders and spaces satisfying the ccc are used in the statement of Martin's axiom.

In the theory of forcing, ccc partial orders are used because forcing with any generic set over such an order preserves cardinals and cofinalities. Furthermore, the ccc property is preserved by finite support iterations (see iterated forcing). For more information on ccc in the context of forcing, see Forcing (set theory) § The countable chain condition.

More generally, if κ is a cardinal then a poset is said to satisfy the κ-chain condition if every antichain has size less than κ. The countable chain condition is the ℵ1-chain condition.

Examples and properties in topology

A topological space is said to satisfy the countable chain condition, or Suslin's Condition, if the partially ordered set of non-empty open subsets of X satisfies the countable chain condition, i.e. every pairwise disjoint collection of non-empty open subsets of X is countable. The name originates from Suslin's Problem.

Related Research Articles

Cardinal number Generalization of natural numbers

In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. The transfinite cardinal numbers, often denoted using the Hebrew symbol (aleph) followed by a subscript, describe the sizes of infinite sets.

In mathematics, model theory is the study of classes of mathematical structures from the perspective of mathematical logic. The objects of study are models of theories in a formal language. A set of sentences in a formal language is one of the components that form a theory. A model of a theory is a structure that satisfies the sentences of that theory.

In mathematics, an uncountable set is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger than that of the set of all natural numbers.

In mathematics, a Borel set is any set in a topological space that can be formed from open sets through the operations of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel.

In mathematics, Suslin's problem is a question about totally ordered sets posed by Mikhail Yakovlevich Suslin (1920) and published posthumously. It has been shown to be independent of the standard axiomatic system of set theory known as ZFC: Solovay & Tennenbaum (1971) showed that the statement can neither be proven nor disproven from those axioms, assuming ZF is consistent.

Aleph number infinite cardinal number

In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality of infinite sets that can be well-ordered. They are named after the symbol used to denote them, the Hebrew letter aleph.

In mathematics, a Lindelöf space is a topological space in which every open cover has a countable subcover. The Lindelöf property is a weakening of the more commonly used notion of compactness, which requires the existence of a finite subcover.

In the mathematical field of set theory, Martin's axiom, introduced by Donald A. Martin and Robert M. Solovay (1970), is a statement that is independent of the usual axioms of ZFC set theory. It is implied by the continuum hypothesis, but it is consistent with ZFC and the negation of the continuum hypothesis. Informally, it says that all cardinals less than the cardinality of the continuum, , behave roughly like . The intuition behind this can be understood by studying the proof of the Rasiowa–Sikorski lemma. It is a principle that is used to control certain forcing arguments.

In mathematics, a complete Boolean algebra is a Boolean algebra in which every subset has a supremum. Complete Boolean algebras are used to construct Boolean-valued models of set theory in the theory of forcing. Every Boolean algebra A has an essentially unique completion, which is a complete Boolean algebra containing A such that every element is the supremum of some subset of A. As a partially ordered set, this completion of A is the Dedekind–MacNeille completion.

In mathematics, a free Boolean algebra is a Boolean algebra with a distinguished set of elements, called generators, such that:

  1. Each element of the Boolean algebra can be expressed as a finite combination of generators, using the Boolean operations, and
  2. The generators are as independent as possible, in the sense that there are no relationships among them that do not hold in every Boolean algebra no matter which elements are chosen.

In mathematics, set-theoretic topology is a subject that combines set theory and general topology. It focuses on topological questions that are independent of Zermelo–Fraenkel set theory (ZFC).

In mathematics, a Suslin tree is a tree of height ω1 such that every branch and every antichain is at most countable. They are named after Mikhail Yakovlevich Suslin.

In general topology, a subset of a topological space is perfect if it is closed and has no isolated points. Equivalently: the set is perfect if , where denotes the set of all limit points of , also known as the derived set of .

In the mathematical field of set theory, the proper forcing axiom (PFA) is a significant strengthening of Martin's axiom, where forcings with the countable chain condition (ccc) are replaced by proper forcings.

In set theory, an Aronszajn tree is an uncountable tree with no uncountable branches and no uncountable levels. For example, every Suslin tree is an Aronszajn tree. More generally, for a cardinal κ, a κ-Aronszajn tree is a tree of height κ in which all levels have size less than κ and all branches have height less than κ. They are named for Nachman Aronszajn, who constructed an Aronszajn tree in 1934; his construction was described by Kurepa (1935).

In mathematics, a cardinal function is a function that returns cardinal numbers.

In the mathematical theory of infinite graphs, the Erdős–Dushnik–Miller theorem is a form of Ramsey's theorem stating that every infinite graph contains either a countably infinite independent set, or a clique with the same cardinality as the whole graph.

This is a glossary of set theory.

References