Completeness is a property of the real numbers that, intuitively, implies that there are no "gaps" (in Dedekind's terminology) or "missing points" in the real number line. This contrasts with the rational numbers, whose corresponding number line has a "gap" at each irrational value. In the decimal number system, completeness is equivalent to the statement that any infinite string of decimal digits is actually a decimal representation for some real number.
Depending on the construction of the real numbers used, completeness may take the form of an axiom (the completeness axiom), or may be a theorem proven from the construction. There are many equivalent forms of completeness, the most prominent being Dedekind completeness and Cauchy completeness (completeness as a metric space).
The real numbers can be defined synthetically as an ordered field satisfying some version of the completeness axiom. Different versions of this axiom are all equivalent in the sense that any ordered field that satisfies one form of completeness satisfies all of them, apart from Cauchy completeness and nested intervals theorem, which are strictly weaker in that there are non Archimedean fields that are ordered and Cauchy complete. When the real numbers are instead constructed using a model, completeness becomes a theorem or collection of theorems.
The least-upper-bound property states that every nonempty subset of real numbers having an upper bound (or bounded above) must have a least upper bound (or supremum) in the set of real numbers.
The rational number line Q does not have the least upper bound property. An example is the subset of rational numbers
This set has an upper bound. However, this set has no least upper bound in Q: the least upper bound as a subset of the reals would be √2, but it does not exist in Q. For any upper bound x ∈ Q, there is another upper bound y ∈ Q with y < x.
For instance, take x = 1.5, then x is certainly an upper bound of S, since x is positive and x2 = 2.25 ≥ 2; that is, no element of S is larger than x. However, we can choose a smaller upper bound, say y = 1.45; this is also an upper bound of S for the same reasons, but it is smaller than x, so x is not a least-upper-bound of S. We can proceed similarly to find an upper bound of S that is smaller than y, say z = 1.42, etc., such that we never find a least-upper-bound of S in Q.
The least upper bound property can be generalized to the setting of partially ordered sets. See completeness (order theory).
Dedekind completeness is the property that every Dedekind cut of the real numbers is generated by a real number. In a synthetic approach to the real numbers, this is the version of completeness that is most often included as an axiom.
The rational number line Q is not Dedekind complete. An example is the Dedekind cut
L does not have a maximum and R does not have a minimum, so this cut is not generated by a rational number.
There is a construction of the real numbers based on the idea of using Dedekind cuts of rational numbers to name real numbers; e.g. the cut (L,R) described above would name . If one were to repeat the construction of real numbers with Dedekind cuts (i.e., "close" the set of real numbers by adding all possible Dedekind cuts), one would obtain no additional numbers because the real numbers are already Dedekind complete.
Cauchy completeness is the statement that every Cauchy sequence of real numbers converges to a real number.
The rational number line Q is not Cauchy complete. An example is the following sequence of rational numbers:
Here the nth term in the sequence is the nth decimal approximation for pi. Though this is a Cauchy sequence of rational numbers, it does not converge to any rational number. (In this real number line, this sequence converges to pi.)
Cauchy completeness is related to the construction of the real numbers using Cauchy sequences. Essentially, this method defines a real number to be the limit of a Cauchy sequence of rational numbers.
In mathematical analysis, Cauchy completeness can be generalized to a notion of completeness for any metric space. See complete metric space.
For an ordered field, Cauchy completeness is weaker than the other forms of completeness on this page. But Cauchy completeness and the Archimedean property taken together are equivalent to the others.
The nested interval theorem is another form of completeness. Let In = [an, bn] be a sequence of closed intervals, and suppose that these intervals are nested in the sense that
Moreover, assume that bn − an → 0 as n → +∞. The nested interval theorem states that the intersection of all of the intervals In contains exactly one point.
The rational number line does not satisfy the nested interval theorem. For example, the sequence (whose terms are derived from the digits of pi in the suggested way)
is a nested sequence of closed intervals in the rational numbers whose intersection is empty. (In the real numbers, the intersection of these intervals contains the number pi.)
Nested intervals theorem shares the same logical status as Cauchy completeness in this spectrum of expressions of completeness. In other words, nested intervals theorem by itself is weaker than other forms of completeness, although taken together with Archimedean property, it is equivalent to the others.
The open induction principle states that a non-empty open subset of the interval must be equal to the entire interval, if for any , we have that implies .
The open induction principle can be shown to be equivalent to Dedekind completeness for arbitrary ordered sets under the order topology, using proofs by contradiction. In weaker foundations such as in constructive analysis where the law of the excluded middle does not hold, the full form of the least upper bound property fails for the Dedekind reals, while the open induction property remains true in most models (following from Brouwer's bar theorem) and is strong enough to give short proofs of key theorems.
The monotone convergence theorem (described as the fundamental axiom of analysis by Körner [1] ) states that every nondecreasing, bounded sequence of real numbers converges. This can be viewed as a special case of the least upper bound property, but it can also be used fairly directly to prove the Cauchy completeness of the real numbers.
The Bolzano–Weierstrass theorem states that every bounded sequence of real numbers has a convergent subsequence. Again, this theorem is equivalent to the other forms of completeness given above.
The intermediate value theorem states that every continuous function that attains both negative and positive values has a root. This is a consequence of the least upper bound property, but it can also be used to prove the least upper bound property if treated as an axiom. (The definition of continuity does not depend on any form of completeness, so there is no circularity: what is meant is that the intermediate value theorem and the least upper bound property are equivalent statements.)
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers is not compact either, because it excludes the two limiting values and . However, the extended real number linewould be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces.
In mathematics, a Cauchy sequence is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all excluding a finite number of elements of the sequence are less than that given distance from each other. Cauchy sequences are named after Augustin-Louis Cauchy; they may occasionally be known as fundamental sequences.
In mathematics, computable numbers are the real numbers that can be computed to within any desired precision by a finite, terminating algorithm. They are also known as the recursive numbers, effective numbers or the computable reals or recursive reals. The concept of a computable real number was introduced by Emile Borel in 1912, using the intuitive notion of computability available at the time.
In mathematical analysis, a metric space M is called complete if every Cauchy sequence of points in M has a limit that is also in M.
In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability.
In mathematics, a well-order on a set S is a total order on S with the property that every non-empty subset of S has a least element in this ordering. The set S together with the well-order relation is then called a well-ordered set. In some academic articles and textbooks these terms are instead written as wellorder, wellordered, and wellordering or well order, well ordered, and well ordering.
In mathematics, the infimum of a subset of a partially ordered set is the greatest element in that is less than or equal to each element of if such an element exists. In other words, it is the greatest element of that is lower or equal to the lowest element of . Consequently, the term greatest lower bound is also commonly used. The supremum of a subset of a partially ordered set is the least element in that is greater than or equal to each element of if such an element exists. In other words, it is the least element of that is greater than or equal to the greatest element of . Consequently, the supremum is also referred to as the least upper bound.
In mathematics, Dedekind cuts, named after German mathematician Richard Dedekind but previously considered by Joseph Bertrand, are а method of construction of the real numbers from the rational numbers. A Dedekind cut is a partition of the rational numbers into two sets A and B, such that all elements of A are less than all elements of B, and A contains no greatest element. The set B may or may not have a smallest element among the rationals. If B has a smallest element among the rationals, the cut corresponds to that rational. Otherwise, that cut defines a unique irrational number which, loosely speaking, fills the "gap" between A and B. In other words, A contains every rational number less than the cut, and B contains every rational number greater than or equal to the cut. An irrational cut is equated to an irrational number which is in neither set. Every real number, rational or not, is equated to one and only one cut of rationals.
In real analysis the Heine–Borel theorem, named after Eduard Heine and Émile Borel, states:
In mathematics, constructive analysis is mathematical analysis done according to some principles of constructive mathematics.
In calculus, the extreme value theorem states that if a real-valued function is continuous on the closed interval , then must attain a maximum and a minimum, each at least once. That is, there exist numbers and in such that:
In mathematics, there are several equivalent ways of defining the real numbers. One of them is that they form a complete ordered field that does not contain any smaller complete ordered field. Such a definition does not prove that such a complete ordered field exists, and the existence proof consists of constructing a mathematical structure that satisfies the definition.
In mathematics, 0.999... is a notation for the repeating decimal consisting of an unending sequence of 9s after the decimal point. This repeating decimal is a numeral that represents the smallest number no less than every number in the sequence ; that is, the supremum of this sequence. This number is equal to 1. In other words, "0.999..." is not "almost exactly" or "very, very nearly but not quite" 1 – rather, "0.999..." and "1" represent exactly the same number.
In 1936, Alfred Tarski set out an axiomatization of the real numbers and their arithmetic, consisting of only the 8 axioms shown below and a mere four primitive notions: the set of reals denoted R, a binary total order over R, denoted by the infix operator <, a binary operation of addition over R, denoted by the infix operator +, and the constant 1.
In mathematics, a sequence of nested intervals can be intuitively understood as an ordered collection of intervals on the real number line with natural numbers as an index. In order for a sequence of intervals to be considered nested intervals, two conditions have to be met:
In the mathematical field of order theory, a continuum or linear continuum is a generalization of the real line.
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion.
In mathematics, the least-upper-bound property is a fundamental property of the real numbers. More generally, a partially ordered set X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound (supremum) in X. Not every (partially) ordered set has the least upper bound property. For example, the set of all rational numbers with its natural order does not have the least upper bound property.
Cantor's intersection theorem refers to two closely related theorems in general topology and real analysis, named after Georg Cantor, about intersections of decreasing nested sequences of non-empty compact sets.