Rational zeta series

Last updated

In mathematics, a rational zeta series is the representation of an arbitrary real number in terms of a series consisting of rational numbers and the Riemann zeta function or the Hurwitz zeta function. Specifically, given a real number x, the rational zeta series for x is given by

Contents

where qn is a rational number, the value m is held fixed, and ζ(s, m) is the Hurwitz zeta function. It is not hard to show that any real number x can be expanded in this way.

Elementary series

For integer m>1, one has

For m=2, a number of interesting numbers have a simple expression as rational zeta series:

and

where γ is the Euler–Mascheroni constant. The series

follows by summing the Gauss–Kuzmin distribution. There are also series for π:

and

being notable because of its fast convergence. This last series follows from the general identity

which in turn follows from the generating function for the Bernoulli numbers

Adamchik and Srivastava give a similar series

A number of additional relationships can be derived from the Taylor series for the polygamma function at z = 1, which is

.

The above converges for |z| < 1. A special case is

which holds for |t| < 2. Here, ψ is the digamma function and ψ(m) is the polygamma function. Many series involving the binomial coefficient may be derived:

where ν is a complex number. The above follows from the series expansion for the Hurwitz zeta

taken at y = 1. Similar series may be obtained by simple algebra:

and

and

and

For integer n  0, the series

can be written as the finite sum

The above follows from the simple recursion relation Sn + Sn + 1 = ζ(n + 2). Next, the series

may be written as

for integer n  1. The above follows from the identity Tn + Tn + 1 = Sn. This process may be applied recursively to obtain finite series for general expressions of the form

for positive integers m.

Half-integer power series

Similar series may be obtained by exploring the Hurwitz zeta function at half-integer values. Thus, for example, one has

Expressions in the form of p-series

Adamchik and Srivastava give

and

where are the Bernoulli numbers and are the Stirling numbers of the second kind.

Other series

Other constants that have notable rational zeta series are:

Related Research Articles

<span class="mw-page-title-main">Bessel function</span> Families of solutions to related differential equations

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation

<span class="mw-page-title-main">Riemann zeta function</span> Analytic function in mathematics

The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as

<span class="mw-page-title-main">Euler's constant</span> Relates logarithm and harmonic series

Euler's constant is a mathematical constant usually denoted by the lowercase Greek letter gamma.

<span class="mw-page-title-main">Bernoulli polynomials</span> Polynomial sequence

In mathematics, the Bernoulli polynomials, named after Jacob Bernoulli, combine the Bernoulli numbers and binomial coefficients. They are used for series expansion of functions, and with the Euler–MacLaurin formula.

<span class="mw-page-title-main">Clausen function</span> Transcendental single-variable function

In mathematics, the Clausen function, introduced by Thomas Clausen (1832), is a transcendental, special function of a single variable. It can variously be expressed in the form of a definite integral, a trigonometric series, and various other forms. It is intimately connected with the polylogarithm, inverse tangent integral, polygamma function, Riemann zeta function, Dirichlet eta function, and Dirichlet beta function.

<span class="mw-page-title-main">Polygamma function</span> Meromorphic function

In mathematics, the polygamma function of order m is a meromorphic function on the complex numbers defined as the (m + 1)th derivative of the logarithm of the gamma function:

<span class="mw-page-title-main">Hurwitz zeta function</span> Special function in mathematics

In mathematics, the Hurwitz zeta function is one of the many zeta functions. It is formally defined for complex variables s with Re(s) > 1 and a ≠ 0, −1, −2, … by

<span class="mw-page-title-main">Mertens function</span> Summatory function of the Möbius function

In number theory, the Mertens function is defined for all positive integers n as

The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up years later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.

In mathematics, Apéry's theorem is a result in number theory that states the Apéry's constant ζ(3) is irrational. That is, the number

<span class="mw-page-title-main">Barnes G-function</span>

In mathematics, the Barnes G-functionG(z) is a function that is an extension of superfactorials to the complex numbers. It is related to the gamma function, the K-function and the Glaisher–Kinkelin constant, and was named after mathematician Ernest William Barnes. It can be written in terms of the double gamma function.

In mathematics, the explicit formulae for L-functions are relations between sums over the complex number zeroes of an L-function and sums over prime powers, introduced by Riemann (1859) for the Riemann zeta function. Such explicit formulae have been applied also to questions on bounding the discriminant of an algebraic number field, and the conductor of a number field.

In mathematics, Apéry's constant is the sum of the reciprocals of the positive cubes. That is, it is defined as the number

In mathematics, the Riemann zeta function is a function in complex analysis, which is also important in number theory. It is often denoted ζ(s) and is named after the mathematician Bernhard Riemann. When the argument s is a real number greater than one, the zeta function satisfies the equation

In complex analysis, functional analysis and operator theory, a Bergman space, named after Stefan Bergman, is a function space of holomorphic functions in a domain D of the complex plane that are sufficiently well-behaved at the boundary that they are absolutely integrable. Specifically, for 0 < p < ∞, the Bergman space Ap(D) is the space of all holomorphic functions in D for which the p-norm is finite:

In mathematics, the multiplication theorem is a certain type of identity obeyed by many special functions related to the gamma function. For the explicit case of the gamma function, the identity is a product of values; thus the name. The various relations all stem from the same underlying principle; that is, the relation for one special function can be derived from that for the others, and is simply a manifestation of the same identity in different guises.

In statistics, the generalized Marcum Q-function of order is defined as

<span class="mw-page-title-main">Ramanujan's master theorem</span>

In mathematics, Ramanujan's Master Theorem, named after Srinivasa Ramanujan, is a technique that provides an analytic expression for the Mellin transform of an analytic function.

Stochastic portfolio theory (SPT) is a mathematical theory for analyzing stock market structure and portfolio behavior introduced by E. Robert Fernholz in 2002. It is descriptive as opposed to normative, and is consistent with the observed behavior of actual markets. Normative assumptions, which serve as a basis for earlier theories like modern portfolio theory (MPT) and the capital asset pricing model (CAPM), are absent from SPT.

References