This article relies largely or entirely on a single source .(August 2021) |
In mathematics, the polygamma function of order m is a meromorphic function on the complex numbers defined as the (m + 1)th derivative of the logarithm of the gamma function:
Thus
holds where ψ(z) is the digamma function and Γ(z) is the gamma function. They are holomorphic on . At all the nonpositive integers these polygamma functions have a pole of order m + 1. The function ψ(1)(z) is sometimes called the trigamma function.
ln Γ(z) | ψ(0)(z) | ψ(1)(z) |
ψ(2)(z) | ψ(3)(z) | ψ(4)(z) |
When m > 0 and Re z > 0, the polygamma function equals
where is the Hurwitz zeta function.
This expresses the polygamma function as the Laplace transform of (−1)m+1tm/1 − e−t. It follows from Bernstein's theorem on monotone functions that, for m > 0 and x real and non-negative, (−1)m+1ψ(m)(x) is a completely monotone function.
Setting m = 0 in the above formula does not give an integral representation of the digamma function. The digamma function has an integral representation, due to Gauss, which is similar to the m = 0 case above but which has an extra term e−t/t.
It satisfies the recurrence relation
which – considered for positive integer argument – leads to a presentation of the sum of reciprocals of the powers of the natural numbers:
and
for all , where is the Euler–Mascheroni constant. Like the log-gamma function, the polygamma functions can be generalized from the domain uniquely to positive real numbers only due to their recurrence relation and one given function-value, say ψ(m)(1), except in the case m = 0 where the additional condition of strict monotonicity on is still needed. This is a trivial consequence of the Bohr–Mollerup theorem for the gamma function where strictly logarithmic convexity on is demanded additionally. The case m = 0 must be treated differently because ψ(0) is not normalizable at infinity (the sum of the reciprocals doesn't converge).
where Pm is alternately an odd or even polynomial of degree |m − 1| with integer coefficients and leading coefficient (−1)m⌈2m − 1⌉. They obey the recursion equation
The multiplication theorem gives
and
for the digamma function.
The polygamma function has the series representation
which holds for integer values of m > 0 and any complex z not equal to a negative integer. This representation can be written more compactly in terms of the Hurwitz zeta function as
This relation can for example be used to compute the special values [1]
Alternately, the Hurwitz zeta can be understood to generalize the polygamma to arbitrary, non-integer order.
One more series may be permitted for the polygamma functions. As given by Schlömilch,
This is a result of the Weierstrass factorization theorem. Thus, the gamma function may now be defined as:
Now, the natural logarithm of the gamma function is easily representable:
Finally, we arrive at a summation representation for the polygamma function:
Where δn0 is the Kronecker delta.
Also the Lerch transcendent
can be denoted in terms of polygamma function
The Taylor series at z = -1 is
and
which converges for |z| < 1. Here, ζ is the Riemann zeta function. This series is easily derived from the corresponding Taylor series for the Hurwitz zeta function. This series may be used to derive a number of rational zeta series.
These non-converging series can be used to get quickly an approximation value with a certain numeric at-least-precision for large arguments: [2]
and
where we have chosen B1 = 1/2, i.e. the Bernoulli numbers of the second kind.
The hyperbolic cotangent satisfies the inequality
and this implies that the function
is non-negative for all m ≥ 1 and t ≥ 0. It follows that the Laplace transform of this function is completely monotone. By the integral representation above, we conclude that
is completely monotone. The convexity inequality et ≥ 1 + t implies that
is non-negative for all m ≥ 1 and t ≥ 0, so a similar Laplace transformation argument yields the complete monotonicity of
Therefore, for all m ≥ 1 and x > 0,
Since both bounds are strictly positive for , we have:
This can be seen in the first plot above.
For the case of the trigamma function () the final inequality formula above for , can be rewritten as:
so that for : .
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as for , and its analytic continuation elsewhere.
Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:
In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers:
In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:
In mathematics, the Hurwitz zeta function is one of the many zeta functions. It is formally defined for complex variables s with Re(s) > 1 and a ≠ 0, −1, −2, … by
In mathematics, the Lerch zeta function, sometimes called the Hurwitz–Lerch zeta function, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about the function in 1887.
In mathematics, the Riemann–Siegel theta function is defined in terms of the gamma function as
In mathematics, the Stieltjes constants are the numbers that occur in the Laurent series expansion of the Riemann zeta function:
In mathematics, the trigamma function, denoted ψ1(z) or ψ(1)(z), is the second of the polygamma functions, and is defined by
In mathematics, the K-function, typically denoted K(z), is a generalization of the hyperfactorial to complex numbers, similar to the generalization of the factorial to the gamma function.
In mathematics, a rational zeta series is the representation of an arbitrary real number in terms of a series consisting of rational numbers and the Riemann zeta function or the Hurwitz zeta function. Specifically, given a real number x, the rational zeta series for x is given by
In mathematics, the explicit formulae for L-functions are relations between sums over the complex number zeroes of an L-function and sums over prime powers, introduced by Riemann (1859) for the Riemann zeta function. Such explicit formulae have been applied also to questions on bounding the discriminant of an algebraic number field, and the conductor of a number field.
In mathematics, the Dirichlet beta function is a special function, closely related to the Riemann zeta function. It is a particular Dirichlet L-function, the L-function for the alternating character of period four.
In mathematics, the Riemann zeta function is a function in complex analysis, which is also important in number theory. It is often denoted and is named after the mathematician Bernhard Riemann. When the argument is a real number greater than one, the zeta function satisfies the equation
In mathematics, a reflection formula or reflection relation for a function f is a relationship between f(a − x) and f(x). It is a special case of a functional equation. It is common in mathematical literature to use the term "functional equation" for what are specifically reflection formulae.
In mathematics, the multiplication theorem is a certain type of identity obeyed by many special functions related to the gamma function. For the explicit case of the gamma function, the identity is a product of values; thus the name. The various relations all stem from the same underlying principle; that is, the relation for one special function can be derived from that for the others, and is simply a manifestation of the same identity in different guises.
In discrete calculus the indefinite sum operator, denoted by or , is the linear operator, inverse of the forward difference operator . It relates to the forward difference operator as the indefinite integral relates to the derivative. Thus
In mathematics, the generalized polygamma function or balanced negapolygamma function is a function introduced by Olivier Espinosa Aldunate and Victor Hugo Moll.
In probability theory and directional statistics, a wrapped Cauchy distribution is a wrapped probability distribution that results from the "wrapping" of the Cauchy distribution around the unit circle. The Cauchy distribution is sometimes known as a Lorentzian distribution, and the wrapped Cauchy distribution may sometimes be referred to as a wrapped Lorentzian distribution.
The Bernoulli polynomials of the second kindψn(x), also known as the Fontana–Bessel polynomials, are the polynomials defined by the following generating function: