Weierstrass factorization theorem

Last updated

In mathematics, and particularly in the field of complex analysis, the Weierstrass factorization theorem asserts that every entire function can be represented as a (possibly infinite) product involving its zeroes. The theorem may be viewed as an extension of the fundamental theorem of algebra, which asserts that every polynomial may be factored into linear factors, one for each root.

Contents

The theorem, which is named for Karl Weierstrass, is closely related to a second result that every sequence tending to infinity has an associated entire function with zeroes at precisely the points of that sequence.

A generalization of the theorem extends it to meromorphic functions and allows one to consider a given meromorphic function as a product of three factors: terms depending on the function's zeros and poles, and an associated non-zero holomorphic function.[ citation needed ]

Motivation

It is clear that any finite set of points in the complex plane has an associated polynomial whose zeroes are precisely at the points of that set. The converse is a consequence of the fundamental theorem of algebra: any polynomial function in the complex plane has a factorization where a is a non-zero constant and is the set of zeroes of . [1]

The two forms of the Weierstrass factorization theorem can be thought of as extensions of the above to entire functions. The necessity of additional terms in the product is demonstrated when one considers where the sequence is not finite. It can never define an entire function, because the infinite product does not converge. Thus one cannot, in general, define an entire function from a sequence of prescribed zeroes or represent an entire function by its zeroes using the expressions yielded by the fundamental theorem of algebra.

A necessary condition for convergence of the infinite product in question is that for each z, the factors must approach 1 as . So it stands to reason that one should seek a function that could be 0 at a prescribed point, yet remain near 1 when not at that point and furthermore introduce no more zeroes than those prescribed. Weierstrass' elementary factors have these properties and serve the same purpose as the factors above.

The elementary factors

Consider the functions of the form for . At , they evaluate to and have a flat slope at order up to . Right after , they sharply fall to some small positive value. In contrast, consider the function which has no flat slope but, at , evaluates to exactly zero. Also note that for |z| < 1,

Plot of
E
n
(
x
)
{\displaystyle E_{n}(x)}
for n = 0,...,4 and x in the interval [-1,1]. First 5 Weierstrass factors on the unit interval.svg
Plot of for n = 0,...,4 and x in the interval [-1,1].

The elementary factors, [2] also referred to as primary factors, [3] are functions that combine the properties of zero slope and zero value (see graphic):

For |z| < 1 and , one may express it as and one can read off how those properties are enforced.

The utility of the elementary factors lies in the following lemma: [2]

Lemma (15.8, Rudin) for |z| ≤ 1,

The two forms of the theorem

Existence of entire function with specified zeroes

Let be a sequence of non-zero complex numbers such that . If is any sequence of nonnegative integers such that for all ,

then the function

is entire with zeros only at points . If a number occurs in the sequence exactly m times, then function f has a zero at of multiplicity m.

The Weierstrass factorization theorem

Let ƒ be an entire function, and let be the non-zero zeros of ƒ repeated according to multiplicity; suppose also that ƒ has a zero at z = 0 of order m ≥ 0. [lower-alpha 1] Then there exists an entire function g and a sequence of integers such that

[4]

Examples of factorization

The trigonometric functions sine and cosine have the factorizations

while the gamma function has factorization

where is the Euler–Mascheroni constant.[ citation needed ] The cosine identity can be seen as special case of

for .[ citation needed ]

Hadamard factorization theorem

A special case of the Weierstraß factorization theorem occurs for entire functions of finite order. In this case the can be taken independent of and the function is a polynomial. Thus

where are those roots of that are not zero (), is the order of the zero of at (the case being taken to mean ), a polynomial (whose degree we shall call ), and is the smallest non-negative integer such that the series

converges. This is called Hadamard's canonical representation. [4] The non-negative integer is called the genus of the entire function . The order of satisfies

In other words: If the order is not an integer, then is the integer part of . If the order is a positive integer, then there are two possibilities: or .

For example, , and are entire functions of genus .

See also

Notes

  1. A zero of order m = 0 at z = 0 is taken to mean ƒ(0) ≠ 0 — that is, does not have a zero at .
  1. Knopp, K. (1996), "Weierstrass's Factor-Theorem", Theory of Functions, Part II, New York: Dover, pp. 1–7.
  2. 1 2 3 Rudin, W. (1987), Real and Complex Analysis (3rd ed.), Boston: McGraw Hill, pp. 301–304, ISBN   0-07-054234-1, OCLC   13093736
  3. Boas, R. P. (1954), Entire Functions, New York: Academic Press Inc., ISBN   0-8218-4505-5, OCLC   6487790 , chapter 2.
  4. 1 2 Conway, J. B. (1995), Functions of One Complex Variable I, 2nd ed., springer.com: Springer, ISBN   0-387-90328-3

Related Research Articles

<span class="mw-page-title-main">Elliptic curve</span> Algebraic curve

In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. An elliptic curve is defined over a field K and describes points in K2, the Cartesian product of K with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions (x, y) for:

In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic on the whole complex plane. Typical examples of entire functions are polynomials and the exponential function, and any finite sums, products and compositions of these, such as the trigonometric functions sine and cosine and their hyperbolic counterparts sinh and cosh, as well as derivatives and integrals of entire functions such as the error function. If an entire function has a root at , then , taking the limit value at , is an entire function. On the other hand, the natural logarithm, the reciprocal function, and the square root are all not entire functions, nor can they be continued analytically to an entire function.

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,

<span class="mw-page-title-main">Riemann zeta function</span> Analytic function in mathematics

The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as

<span class="mw-page-title-main">Digamma function</span> Mathematical function

In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:

<span class="mw-page-title-main">Theta function</span> Special functions of several complex variables

In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory.

In combinatorics, the symbolic method is a technique for counting combinatorial objects. It uses the internal structure of the objects to derive formulas for their generating functions. The method is mostly associated with Philippe Flajolet and is detailed in Part A of his book with Robert Sedgewick, Analytic Combinatorics, while the rest of the book explains how to use complex analysis in order to get asymptotic and probabilistic results on the corresponding generating functions.

In mathematics, the Weierstrass functions are special functions of a complex variable that are auxiliary to the Weierstrass elliptic function. They are named for Karl Weierstrass. The relation between the sigma, zeta, and functions is analogous to that between the sine, cotangent, and squared cosecant functions: the logarithmic derivative of the sine is the cotangent, whose derivative is negative the squared cosecant.

In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. It is an example of an important arithmetic function that is neither multiplicative nor additive.

<span class="mw-page-title-main">Barnes G-function</span>

In mathematics, the Barnes G-functionG(z) is a function that is an extension of superfactorials to the complex numbers. It is related to the gamma function, the K-function and the Glaisher–Kinkelin constant, and was named after mathematician Ernest William Barnes. It can be written in terms of the double gamma function.

In mathematics, the explicit formulae for L-functions are relations between sums over the complex number zeroes of an L-function and sums over prime powers, introduced by Riemann (1859) for the Riemann zeta function. Such explicit formulae have been applied also to questions on bounding the discriminant of an algebraic number field, and the conductor of a number field.

In mathematics, and particularly in the field of complex analysis, the Hadamard factorization theorem asserts that every entire function with finite order can be represented as a product involving its zeroes and an exponential of a polynomial. It is named for Jacques Hadamard.

<span class="mw-page-title-main">Reciprocal gamma function</span> Mathematical function

In mathematics, the reciprocal gamma function is the function

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

In mathematics, the secondary measure associated with a measure of positive density ρ when there is one, is a measure of positive density μ, turning the secondary polynomials associated with the orthogonal polynomials for ρ into an orthogonal system.

In statistics, the Fisher–Tippett–Gnedenko theorem is a general result in extreme value theory regarding asymptotic distribution of extreme order statistics. The maximum of a sample of iid random variables after proper renormalization can only converge in distribution to one of only 3 possible distribution families: the Gumbel distribution, the Fréchet distribution, or the Weibull distribution. Credit for the extreme value theorem and its convergence details are given to Fréchet (1927), Fisher and Tippett (1928), Mises (1936), and Gnedenko (1943).

In mathematics and in particular the field of complex analysis, Hurwitz's theorem is a theorem associating the zeroes of a sequence of holomorphic, compact locally uniformly convergent functions with that of their corresponding limit. The theorem is named after Adolf Hurwitz.

In mathematics, for a sequence of complex numbers a1, a2, a3, ... the infinite product

A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product is a product distribution.

In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a single function see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system.