Multiplication theorem

Last updated

In mathematics, the multiplication theorem is a certain type of identity obeyed by many special functions related to the gamma function. For the explicit case of the gamma function, the identity is a product of values; thus the name. The various relations all stem from the same underlying principle; that is, the relation for one special function can be derived from that for the others, and is simply a manifestation of the same identity in different guises.

Contents

Finite characteristic

The multiplication theorem takes two common forms. In the first case, a finite number of terms are added or multiplied to give the relation. In the second case, an infinite number of terms are added or multiplied. The finite form typically occurs only for the gamma and related functions, for which the identity follows from a p-adic relation over a finite field. For example, the multiplication theorem for the gamma function follows from the Chowla–Selberg formula, which follows from the theory of complex multiplication. The infinite sums are much more common, and follow from characteristic zero relations on the hypergeometric series.

The following tabulates the various appearances of the multiplication theorem for finite characteristic; the characteristic zero relations are given further down. In all cases, n and k are non-negative integers. For the special case of n = 2, the theorem is commonly referred to as the duplication formula.

Gamma function–Legendre formula

The duplication formula and the multiplication theorem for the gamma function are the prototypical examples. The duplication formula for the gamma function is

It is also called the Legendre duplication formula [1] or Legendre relation, in honor of Adrien-Marie Legendre. The multiplication theorem is

for integer k 1, and is sometimes called Gauss's multiplication formula, in honour of Carl Friedrich Gauss. The multiplication theorem for the gamma functions can be understood to be a special case, for the trivial Dirichlet character, of the Chowla–Selberg formula.

Sine function

Formally similar duplication formulas hold for the sine function, which are rather simple consequences of the trigonometric identities. Here one has the duplication formula

and, more generally, for any integer k, one has

Polygamma function, harmonic numbers

The polygamma function is the logarithmic derivative of the gamma function, and thus, the multiplication theorem becomes additive, instead of multiplicative:

for , and, for , one has the digamma function:

The polygamma identities can be used to obtain a multiplication theorem for harmonic numbers.

Hurwitz zeta function

For the Hurwitz zeta function generalizes the polygamma function to non-integer orders, and thus obeys a very similar multiplication theorem:

where is the Riemann zeta function. This is a special case of

and

Multiplication formulas for the non-principal characters may be given in the form of Dirichlet L-functions.

Periodic zeta function

The periodic zeta function [2] is sometimes defined as

where Lis(z) is the polylogarithm. It obeys the duplication formula

As such, it is an eigenvector of the Bernoulli operator with eigenvalue 21s. The multiplication theorem is

The periodic zeta function occurs in the reflection formula for the Hurwitz zeta function, which is why the relation that it obeys, and the Hurwitz zeta relation, differ by the interchange of s  1s.

The Bernoulli polynomials may be obtained as a limiting case of the periodic zeta function, taking s to be an integer, and thus the multiplication theorem there can be derived from the above. Similarly, substituting q = log z leads to the multiplication theorem for the polylogarithm.

Polylogarithm

The duplication formula takes the form

The general multiplication formula is in the form of a Gauss sum or discrete Fourier transform:

These identities follow from that on the periodic zeta function, taking z = log q.

Kummer's function

The duplication formula for Kummer's function is

and thus resembles that for the polylogarithm, but twisted by i.

Bernoulli polynomials

For the Bernoulli polynomials, the multiplication theorems were given by Joseph Ludwig Raabe in 1851:

and for the Euler polynomials,

and

The Bernoulli polynomials may be obtained as a special case of the Hurwitz zeta function, and thus the identities follow from there.

Bernoulli map

The Bernoulli map is a certain simple model of a dissipative dynamical system, describing the effect of a shift operator on an infinite string of coin-flips (the Cantor set). The Bernoulli map is a one-sided version of the closely related Baker's map. The Bernoulli map generalizes to a k-adic version, which acts on infinite strings of k symbols: this is the Bernoulli scheme. The transfer operator corresponding to the shift operator on the Bernoulli scheme is given by

Perhaps not surprisingly, the eigenvectors of this operator are given by the Bernoulli polynomials. That is, one has that

It is the fact that the eigenvalues that marks this as a dissipative system: for a non-dissipative measure-preserving dynamical system, the eigenvalues of the transfer operator lie on the unit circle.

One may construct a function obeying the multiplication theorem from any totally multiplicative function. Let be totally multiplicative; that is, for any integers m, n. Define its Fourier series as

Assuming that the sum converges, so that g(x) exists, one then has that it obeys the multiplication theorem; that is, that

That is, g(x) is an eigenfunction of Bernoulli transfer operator, with eigenvalue f(k). The multiplication theorem for the Bernoulli polynomials then follows as a special case of the multiplicative function . The Dirichlet characters are fully multiplicative, and thus can be readily used to obtain additional identities of this form.

Characteristic zero

The multiplication theorem over a field of characteristic zero does not close after a finite number of terms, but requires an infinite series to be expressed. Examples include that for the Bessel function :

where and may be taken as arbitrary complex numbers. Such characteristic-zero identities follow generally from one of many possible identities on the hypergeometric series.

Notes

  1. Weisstein, Eric W. "Legendre Duplication Formula". MathWorld .
  2. Apostol, Introduction to analytic number theory, Springer

Related Research Articles

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,

<span class="mw-page-title-main">Riemann zeta function</span> Analytic function in mathematics

The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as

<span class="mw-page-title-main">Residue theorem</span> Concept of complex analysis

In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula. The residue theorem should not be confused with special cases of the generalized Stokes' theorem; however, the latter can be used as an ingredient of its proof.

<span class="mw-page-title-main">Euler's constant</span> Relates logarithm and harmonic series

Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:

<span class="mw-page-title-main">Bernoulli polynomials</span> Polynomial sequence

In mathematics, the Bernoulli polynomials, named after Jacob Bernoulli, combine the Bernoulli numbers and binomial coefficients. They are used for series expansion of functions, and with the Euler–MacLaurin formula.

<span class="mw-page-title-main">Clausen function</span> Transcendental single-variable function

In mathematics, the Clausen function, introduced by Thomas Clausen (1832), is a transcendental, special function of a single variable. It can variously be expressed in the form of a definite integral, a trigonometric series, and various other forms. It is intimately connected with the polylogarithm, inverse tangent integral, polygamma function, Riemann zeta function, Dirichlet eta function, and Dirichlet beta function.

<span class="mw-page-title-main">Polygamma function</span> Meromorphic function

In mathematics, the polygamma function of order m is a meromorphic function on the complex numbers defined as the (m + 1)th derivative of the logarithm of the gamma function:

<span class="mw-page-title-main">Digamma function</span> Mathematical function

In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:

<span class="mw-page-title-main">Hurwitz zeta function</span> Special function in mathematics

In mathematics, the Hurwitz zeta function is one of the many zeta functions. It is formally defined for complex variables s with Re(s) > 1 and a ≠ 0, −1, −2, … by

<span class="mw-page-title-main">Polylogarithm</span> Special mathematical function

In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Lis(z) of order s and argument z. Only for special values of s does the polylogarithm reduce to an elementary function such as the natural logarithm or a rational function. In quantum statistics, the polylogarithm function appears as the closed form of integrals of the Fermi–Dirac distribution and the Bose–Einstein distribution, and is also known as the Fermi–Dirac integral or the Bose–Einstein integral. In quantum electrodynamics, polylogarithms of positive integer order arise in the calculation of processes represented by higher-order Feynman diagrams.

The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.

In mathematics, the Lerch zeta function, sometimes called the Hurwitz–Lerch zeta function, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about the function in 1887.

<span class="mw-page-title-main">Stieltjes constants</span>

In mathematics, the Stieltjes constants are the numbers that occur in the Laurent series expansion of the Riemann zeta function:

In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. It is an example of an important arithmetic function that is neither multiplicative nor additive.

<span class="mw-page-title-main">Trigamma function</span> Mathematical function

In mathematics, the trigamma function, denoted ψ1(z) or ψ(1)(z), is the second of the polygamma functions, and is defined by

<span class="mw-page-title-main">Barnes G-function</span>

In mathematics, the Barnes G-functionG(z) is a function that is an extension of superfactorials to the complex numbers. It is related to the gamma function, the K-function and the Glaisher–Kinkelin constant, and was named after mathematician Ernest William Barnes. It can be written in terms of the double gamma function.

In q-analog theory, the -gamma function, or basic gamma function, is a generalization of the ordinary gamma function closely related to the double gamma function. It was introduced by Jackson (1905). It is given by

In discrete calculus the indefinite sum operator, denoted by or , is the linear operator, inverse of the forward difference operator . It relates to the forward difference operator as the indefinite integral relates to the derivative. Thus

<span class="mw-page-title-main">Ramanujan's master theorem</span> Mathematical theorem

In mathematics, Ramanujan's Master Theorem, named after Srinivasa Ramanujan, is a technique that provides an analytic expression for the Mellin transform of an analytic function.

References