Complex multiplication

Last updated

In mathematics, complex multiplication (CM) is the theory of elliptic curves E that have an endomorphism ring larger than the integers. [1] Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible when the period lattice is the Gaussian integer lattice or Eisenstein integer lattice.

Contents

It has an aspect belonging to the theory of special functions, because such elliptic functions, or abelian functions of several complex variables, are then 'very special' functions satisfying extra identities and taking explicitly calculable special values at particular points. It has also turned out to be a central theme in algebraic number theory, allowing some features of the theory of cyclotomic fields to be carried over to wider areas of application. David Hilbert is said to have remarked that the theory of complex multiplication of elliptic curves was not only the most beautiful part of mathematics but of all science. [2]

There is also the higher-dimensional complex multiplication theory of abelian varieties A having enough endomorphisms in a certain precise sense, roughly that the action on the tangent space at the identity element of A is a direct sum of one-dimensional modules.

Example of the imaginary quadratic field extension

An elliptic curve over the complex numbers is obtained as a quotient of the complex plane by a lattice L, here spanned by two fundamental periods o1 and o2. The four-torsion is also shown, corresponding to the lattice 1/4 L containing L. The example of an elliptic curve corresponding to the Gaussian integers occurs when o2 = i o1. Lattice torsion points.svg
An elliptic curve over the complex numbers is obtained as a quotient of the complex plane by a lattice Λ, here spanned by two fundamental periods ω1 and ω2. The four-torsion is also shown, corresponding to the lattice 1/4 Λ containing Λ. The example of an elliptic curve corresponding to the Gaussian integers occurs when ω2 = iω1.

Consider an imaginary quadratic field . An elliptic function is said to have complex multiplication if there is an algebraic relation between and for all in .

Conversely, Kronecker conjectured – in what became known as the Kronecker Jugendtraum – that every abelian extension of could be obtained by the (roots of the) equation of a suitable elliptic curve with complex multiplication. To this day this remains one of the few cases of Hilbert's twelfth problem which has actually been solved.

An example of an elliptic curve with complex multiplication is

where Z[i] is the Gaussian integer ring, and θ is any non-zero complex number. Any such complex torus has the Gaussian integers as endomorphism ring. It is known that the corresponding curves can all be written as

for some , which demonstrably has two conjugate order-4 automorphisms sending

in line with the action of i on the Weierstrass elliptic functions.

More generally, consider the lattice Λ, an additive group in the complex plane, generated by . Then we define the Weierstrass function of the variable in as follows:

and

Let be the derivative of . Then we obtain an isomorphism of complex Lie groups:

from the complex torus group to the projective elliptic curve defined in homogeneous coordinates by

and where the point at infinity, the zero element of the group law of the elliptic curve, is by convention taken to be . If the lattice defining the elliptic curve is actually preserved under multiplication by (possibly a proper subring of) the ring of integers of , then the ring of analytic automorphisms of turns out to be isomorphic to this (sub)ring.

If we rewrite where and , then

This means that the j-invariant of is an algebraic number – lying in – if has complex multiplication.

Abstract theory of endomorphisms

The ring of endomorphisms of an elliptic curve can be of one of three forms: the integers Z; an order in an imaginary quadratic number field; or an order in a definite quaternion algebra over Q. [3]

When the field of definition is a finite field, there are always non-trivial endomorphisms of an elliptic curve, coming from the Frobenius map, so every such curve has complex multiplication (and the terminology is not often applied). But when the base field is a number field, complex multiplication is the exception. It is known that, in a general sense, the case of complex multiplication is the hardest to resolve for the Hodge conjecture.

Kronecker and abelian extensions

Kronecker first postulated that the values of elliptic functions at torsion points should be enough to generate all abelian extensions for imaginary quadratic fields, an idea that went back to Eisenstein in some cases, and even to Gauss. This became known as the Kronecker Jugendtraum ; and was certainly what had prompted Hilbert's remark above, since it makes explicit class field theory in the way the roots of unity do for abelian extensions of the rational number field, via Shimura's reciprocity law.

Indeed, let K be an imaginary quadratic field with class field H. Let E be an elliptic curve with complex multiplication by the integers of K, defined over H. Then the maximal abelian extension of K is generated by the x-coordinates of the points of finite order on some Weierstrass model for E over H. [4]

Many generalisations have been sought of Kronecker's ideas; they do however lie somewhat obliquely to the main thrust of the Langlands philosophy, and there is no definitive statement currently known.

Sample consequence

It is no accident that

or equivalently,

is so close to an integer. This remarkable fact is explained by the theory of complex multiplication, together with some knowledge of modular forms, and the fact that

is a unique factorization domain.

Here satisfies α2 = α 41. In general, S[α] denotes the set of all polynomial expressions in α with coefficients in S, which is the smallest ring containing α and S. Because α satisfies this quadratic equation, the required polynomials can be limited to degree one.

Alternatively,

an internal structure due to certain Eisenstein series, and with similar simple expressions for the other Heegner numbers.

Singular moduli

The points of the upper half-plane τ which correspond to the period ratios of elliptic curves over the complex numbers with complex multiplication are precisely the imaginary quadratic numbers. [5] The corresponding modular invariants j(τ) are the singular moduli, coming from an older terminology in which "singular" referred to the property of having non-trivial endomorphisms rather than referring to a singular curve. [6]

The modular function j(τ) is algebraic on imaginary quadratic numbers τ: [7] these are the only algebraic numbers in the upper half-plane for which j is algebraic. [8]

If Λ is a lattice with period ratio τ then we write j(Λ) for j(τ). If further Λ is an ideal a in the ring of integers OK of a quadratic imaginary field K then we write j(a) for the corresponding singular modulus. The values j(a) are then real algebraic integers, and generate the Hilbert class field H of K: the field extension degree [H:K] = h is the class number of K and the H/K is a Galois extension with Galois group isomorphic to the ideal class group of K. The class group acts on the values j(a) by [b] : j(a) → j(ab).

In particular, if K has class number one, then j(a) = j(O) is a rational integer: for example, j(Z[i]) = j(i) = 1728.

See also

Citations

  1. Silverman 2009, p. 69, Remark 4.3.
  2. Reid, Constance (1996), Hilbert, Springer, p.  200, ISBN   978-0-387-94674-0
  3. Silverman 1986, p. 102.
  4. Serre 1967, p. 295.
  5. Silverman 1986, p. 339.
  6. Silverman 1994, p. 104.
  7. Serre 1967, p. 293.
  8. Baker, Alan (1975). Transcendental Number Theory. Cambridge University Press. p. 56. ISBN   0-521-20461-5. Zbl   0297.10013.

Related Research Articles

<span class="mw-page-title-main">Elliptic curve</span> Algebraic curve

In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. An elliptic curve is defined over a field K and describes points in K2, the Cartesian product of K with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions (x, y) for:

In the mathematical field of complex analysis, elliptic functions are a special kind of meromorphic functions, that satisfy two periodicity conditions. They are named elliptic functions because they come from elliptic integrals. Originally those integrals occurred at the calculation of the arc length of an ellipse.

In mathematics, a modular form is a (complex) analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the group action of the modular group, and also satisfying a growth condition. The theory of modular forms therefore belongs to complex analysis but the main importance of the theory has traditionally been in its connections with number theory. Modular forms appear in other areas, such as algebraic topology, sphere packing, and string theory.

<span class="mw-page-title-main">Weierstrass elliptic function</span> Class of mathematical functions

In mathematics, the Weierstrass elliptic functions are elliptic functions that take a particularly simple form. They are named for Karl Weierstrass. This class of functions are also referred to as ℘-functions and they are usually denoted by the symbol ℘, a uniquely fancy script p. They play an important role in the theory of elliptic functions. A ℘-function together with its derivative can be used to parameterize elliptic curves and they generate the field of elliptic functions with respect to a given period lattice.

<i>j</i>-invariant

In mathematics, Felix Klein's j-invariant or j function, regarded as a function of a complex variable τ, is a modular function of weight zero for SL(2, Z) defined on the upper half-plane of complex numbers. It is the unique such function which is holomorphic away from a simple pole at the cusp such that

In mathematics, Dirichlet's unit theorem is a basic result in algebraic number theory due to Peter Gustav Lejeune Dirichlet. It determines the rank of the group of units in the ring OK of algebraic integers of a number field K. The regulator is a positive real number that determines how "dense" the units are.

In contexts including complex manifolds and algebraic geometry, a logarithmic differential form is a meromorphic differential form with poles of a certain kind. The concept was introduced by Deligne.

In mathematics, an abelian variety A defined over a field K is said to have CM-type if it has a large enough commutative subring in its endomorphism ring End(A). The terminology here is from complex multiplication theory, which was developed for elliptic curves in the nineteenth century. One of the major achievements in algebraic number theory and algebraic geometry of the twentieth century was to find the correct formulations of the corresponding theory for abelian varieties of dimension d > 1. The problem is at a deeper level of abstraction, because it is much harder to manipulate analytic functions of several complex variables.

In mathematics, a vertex operator algebra (VOA) is an algebraic structure that plays an important role in two-dimensional conformal field theory and string theory. In addition to physical applications, vertex operator algebras have proven useful in purely mathematical contexts such as monstrous moonshine and the geometric Langlands correspondence.

<span class="mw-page-title-main">Fundamental pair of periods</span> Way of defining a lattice in the complex plane

In mathematics, a fundamental pair of periods is an ordered pair of complex numbers that define a lattice in the complex plane. This type of lattice is the underlying object with which elliptic functions and modular forms are defined.

Kronecker's Jugendtraum or Hilbert's twelfth problem, of the 23 mathematical Hilbert problems, is the extension of the Kronecker–Weber theorem on abelian extensions of the rational numbers, to any base number field. That is, it asks for analogues of the roots of unity, as complex numbers that are particular values of the exponential function; the requirement is that such numbers should generate a whole family of further number fields that are analogues of the cyclotomic fields and their subfields.

In algebraic geometry, supersingular elliptic curves form a certain class of elliptic curves over a field of characteristic p > 0 with unusually large endomorphism rings. Elliptic curves over such fields which are not supersingular are called ordinary and these two classes of elliptic curves behave fundamentally differently in many aspects. Hasse (1936) discovered supersingular elliptic curves during his work on the Riemann hypothesis for elliptic curves by observing that positive characteristic elliptic curves could have endomorphism rings of unusually large rank 4, and Deuring (1941) developed their basic theory.

Brauer's theorem on induced characters, often known as Brauer's induction theorem, and named after Richard Brauer, is a basic result in the branch of mathematics known as character theory, within representation theory of a finite group.

<span class="mw-page-title-main">Complex torus</span>

In mathematics, a complex torus is a particular kind of complex manifold M whose underlying smooth manifold is a torus in the usual sense. Here N must be the even number 2n, where n is the complex dimension of M.

In number theory, the Néron–Tate height is a quadratic form on the Mordell–Weil group of rational points of an abelian variety defined over a global field. It is named after André Néron and John Tate.

In mathematics, the Abel–Jacobi map is a construction of algebraic geometry which relates an algebraic curve to its Jacobian variety. In Riemannian geometry, it is a more general construction mapping a manifold to its Jacobi torus. The name derives from the theorem of Abel and Jacobi that two effective divisors are linearly equivalent if and only if they are indistinguishable under the Abel–Jacobi map.

In number theory, quadratic integers are a generalization of the usual integers to quadratic fields. Quadratic integers are algebraic integers of degree two, that is, solutions of equations of the form

<span class="mw-page-title-main">Modular lambda function</span>

In mathematics, the modular lambda function λ(τ) is a highly symmetric holomorphic function on the complex upper half-plane. It is invariant under the fractional linear action of the congruence group Γ(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the modular curve X(2). Over any point τ, its value can be described as a cross ratio of the branch points of a ramified double cover of the projective line by the elliptic curve , where the map is defined as the quotient by the [−1] involution.

In mathematics, the Tate curve is a curve defined over the ring of formal power series with integer coefficients. Over the open subscheme where q is invertible, the Tate curve is an elliptic curve. The Tate curve can also be defined for q as an element of a complete field of norm less than 1, in which case the formal power series converge.

In mathematics, the moduli stack of elliptic curves, denoted as or , is an algebraic stack over classifying elliptic curves. Note that it is a special case of the moduli stack of algebraic curves . In particular its points with values in some field correspond to elliptic curves over the field, and more generally morphisms from a scheme to it correspond to elliptic curves over . The construction of this space spans over a century because of the various generalizations of elliptic curves as the field has developed. All of these generalizations are contained in .

References