The Lerch transcendent has an integral representation:
The proof is based on using the integral definition of the Gamma function to write
and then interchanging the sum and integral. The resulting integral representation converges for Re(s) > 0, and Re(a) > 0. This analytically continues to z outside the unit disk. The integral formula also holds if z = 1, Re(s) > 1, and Re(a) > 0; see Hurwitz zeta function.[8][9]
where C is a Hankel contour counterclockwise around the positive real axis, not enclosing any of the points (for integer k) which are poles of the integrand. The integral assumes Re(a) > 0.[10]
Other integral representations
A Hermite-like integral representation is given by
for
and
for
Similar representations include
and
holding for positive z (and more generally wherever the integrals converge). Furthermore,
The last formula is also known as Lipschitz formula.
Identities
For λ rational, the summand is a root of unity, and thus may be expressed as a finite sum over the Hurwitz zeta function. Suppose with and . Then and .
Various identities include:
and
and
Series representations
A series representation for the Lerch transcendent is given by
The series is valid for all s, and for complex z with Re(z)<1/2. Note a general resemblance to a similar series representation for the Hurwitz zeta function.[11]
A Taylor series in the first parameter was given by Arthur Erdélyi. It may be written as the following series, which is valid for[12]
The Lerch transcendent is implemented as LerchPhi in Maple and Mathematica, and as lerchphi in mpmath and SymPy.
Related Research Articles
Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation for an arbitrary complex number , which represents the order of the Bessel function. Although and produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of .
In mathematics, Catalan's constantG, is the alternating sum of the reciprocals of the odd square numbers, being defined by:
Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:
In mathematics, the Gudermannian function relates a hyperbolic angle measure to a circular angle measure called the gudermannian of and denoted . The Gudermannian function reveals a close relationship between the circular functions and hyperbolic functions. It was introduced in the 1760s by Johann Heinrich Lambert, and later named for Christoph Gudermann who also described the relationship between circular and hyperbolic functions in 1830. The gudermannian is sometimes called the hyperbolic amplitude as a limiting case of the Jacobi elliptic amplitude when parameter
In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. It is denoted by π(x) (unrelated to the number π).
In mathematics, the Hurwitz zeta function is one of the many zeta functions. It is formally defined for complex variables s with Re(s) > 1 and a ≠ 0, −1, −2, … by
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory.
In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Lis(z) of order s and argument z. Only for special values of s does the polylogarithm reduce to an elementary function such as the natural logarithm or a rational function. In quantum statistics, the polylogarithm function appears as the closed form of integrals of the Fermi–Dirac distribution and the Bose–Einstein distribution, and is also known as the Fermi–Dirac integral or the Bose–Einstein integral. In quantum electrodynamics, polylogarithms of positive integer order arise in the calculation of processes represented by higher-order Feynman diagrams.
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.
In probability theory, a distribution is said to be stable if a linear combination of two independent random variables with this distribution has the same distribution, up to location and scale parameters. A random variable is said to be stable if its distribution is stable. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it.
In mathematics, the Legendre chi function is a special function whose Taylor series is also a Dirichlet series, given by
The Havriliak–Negami relaxation is an empirical modification of the Debye relaxation model in electromagnetism. Unlike the Debye model, the Havriliak–Negami relaxation accounts for the asymmetry and broadness of the dielectric dispersion curve. The model was first used to describe the dielectric relaxation of some polymers, by adding two exponential parameters to the Debye equation:
The inverse tangent integral is a special function, defined by:
In mathematics, the FEE method, or fast E-function evaluation method, is the method of fast summation of series of a special form. It was constructed in 1990 by Ekaterina Karatsuba and is so-named because it makes fast computations of the Siegel E-functions possible, in particular of .
In probability theory and directional statistics, a wrapped exponential distribution is a wrapped probability distribution that results from the "wrapping" of the exponential distribution around the unit circle.
In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a single function see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system.
In mathematics, the Abel–Plana formula is a summation formula discovered independently by Niels Henrik Abel and Giovanni Antonio Amedeo Plana. It states that
Guillera, Jesus; Sondow, Jonathan (2008), "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent", The Ramanujan Journal, 16 (3): 247–270, arXiv:math.NT/0506319, doi:10.1007/s11139-007-9102-0, MR2429900, S2CID119131640 . (Includes various basic identities in the introduction.)
Jackson, M. (1950), "On Lerch's transcendent and the basic bilateral hypergeometric series 2ψ2", J. London Math. Soc., 25 (3): 189–196, doi:10.1112/jlms/s1-25.3.189, MR0036882 .
This page is based on this Wikipedia article Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses.