Lerch transcendent

Last updated

In mathematics, the Lerch transcendent, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about a similar function in 1887. [1] The Lerch transcendent, is given by:

Contents

.

It only converges for any real number , where , or , and . [2]

Special cases

The Lerch transcendent is related to and generalizes various special functions.

The Lerch zeta function is given by:

The Hurwitz zeta function is the special case [3]

The polylogarithm is another special case: [3]

The Riemann zeta function is a special case of both of the above: [3]

The Dirichlet eta function: [3]

The Dirichlet beta function: [3]

The Legendre chi function: [3]

The inverse tangent integral: [4]

The polygamma functions for positive integers n: [5] [6]

The Clausen function: [7]

Integral representations

The Lerch transcendent has an integral representation:

The proof is based on using the integral definition of the Gamma function to write

and then interchanging the sum and integral. The resulting integral representation converges for Re(s) > 0, and Re(a) > 0. This analytically continues to z outside the unit disk. The integral formula also holds if z = 1, Re(s) > 1, and Re(a) > 0; see Hurwitz zeta function. [8] [9]

A contour integral representation is given by

where C is a Hankel contour counterclockwise around the positive real axis, not enclosing any of the points (for integer k) which are poles of the integrand. The integral assumes Re(a) > 0. [10]

Other integral representations

A Hermite-like integral representation is given by

for

and

for

Similar representations include

and

holding for positive z (and more generally wherever the integrals converge). Furthermore,

The last formula is also known as Lipschitz formula.

Identities

For λ rational, the summand is a root of unity, and thus may be expressed as a finite sum over the Hurwitz zeta function. Suppose with and . Then and .

Various identities include:

and

and

Series representations

A series representation for the Lerch transcendent is given by

(Note that is a binomial coefficient.)

The series is valid for all s, and for complex z with Re(z)<1/2. Note a general resemblance to a similar series representation for the Hurwitz zeta function. [11]

A Taylor series in the first parameter was given by Arthur Erdélyi. It may be written as the following series, which is valid for [12]

If n is a positive integer, then

where is the digamma function.

A Taylor series in the third variable is given by

where is the Pochhammer symbol.

Series at a = −n is given by

A special case for n = 0 has the following series

where is the polylogarithm.

An asymptotic series for

for and

for

An asymptotic series in the incomplete gamma function

for

The representation as a generalized hypergeometric function is [13]

Asymptotic expansion

The polylogarithm function is defined as

Let

For and , an asymptotic expansion of for large and fixed and is given by

for , where is the Pochhammer symbol. [14]

Let

Let be its Taylor coefficients at . Then for fixed and ,

as . [15]

Software

The Lerch transcendent is implemented as LerchPhi in Maple and Mathematica, and as lerchphi in mpmath and SymPy.

Related Research Articles

<span class="mw-page-title-main">Bessel function</span> Families of solutions to related differential equations

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation for an arbitrary complex number , which represents the order of the Bessel function. Although and produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of .

In mathematics, Catalan's constantG, is the alternating sum of the reciprocals of the odd square numbers, being defined by:

<span class="mw-page-title-main">Euler's constant</span> Constant value used in mathematics

Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:

<span class="mw-page-title-main">Gudermannian function</span> Mathematical function relating circular and hyperbolic functions

In mathematics, the Gudermannian function relates a hyperbolic angle measure to a circular angle measure called the gudermannian of and denoted . The Gudermannian function reveals a close relationship between the circular functions and hyperbolic functions. It was introduced in the 1760s by Johann Heinrich Lambert, and later named for Christoph Gudermann who also described the relationship between circular and hyperbolic functions in 1830. The gudermannian is sometimes called the hyperbolic amplitude as a limiting case of the Jacobi elliptic amplitude when parameter

<span class="mw-page-title-main">Prime-counting function</span> Function representing the number of primes less than or equal to a given number

In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. It is denoted by π(x) (unrelated to the number π).

<span class="mw-page-title-main">Hurwitz zeta function</span> Special function in mathematics

In mathematics, the Hurwitz zeta function is one of the many zeta functions. It is formally defined for complex variables s with Re(s) > 1 and a ≠ 0, −1, −2, … by

<span class="mw-page-title-main">Theta function</span> Special functions of several complex variables

In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory.

<span class="mw-page-title-main">Polylogarithm</span> Special mathematical function

In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Lis(z) of order s and argument z. Only for special values of s does the polylogarithm reduce to an elementary function such as the natural logarithm or a rational function. In quantum statistics, the polylogarithm function appears as the closed form of integrals of the Fermi–Dirac distribution and the Bose–Einstein distribution, and is also known as the Fermi–Dirac integral or the Bose–Einstein integral. In quantum electrodynamics, polylogarithms of positive integer order arise in the calculation of processes represented by higher-order Feynman diagrams.

The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.

<span class="mw-page-title-main">Stable distribution</span> Distribution of variables which satisfies a stability property under linear combinations

In probability theory, a distribution is said to be stable if a linear combination of two independent random variables with this distribution has the same distribution, up to location and scale parameters. A random variable is said to be stable if its distribution is stable. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it.

In mathematics, the Legendre chi function is a special function whose Taylor series is also a Dirichlet series, given by

The Havriliak–Negami relaxation is an empirical modification of the Debye relaxation model in electromagnetism. Unlike the Debye model, the Havriliak–Negami relaxation accounts for the asymmetry and broadness of the dielectric dispersion curve. The model was first used to describe the dielectric relaxation of some polymers, by adding two exponential parameters to the Debye equation:

The inverse tangent integral is a special function, defined by:

In mathematics, the FEE method, or fast E-function evaluation method, is the method of fast summation of series of a special form. It was constructed in 1990 by Ekaterina Karatsuba and is so-named because it makes fast computations of the Siegel E-functions possible, in particular of .

<span class="mw-page-title-main">Wrapped exponential distribution</span> Probability distribution

In probability theory and directional statistics, a wrapped exponential distribution is a wrapped probability distribution that results from the "wrapping" of the exponential distribution around the unit circle.

In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a single function see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system.

In mathematics, the Abel–Plana formula is a summation formula discovered independently by Niels Henrik Abel and Giovanni Antonio Amedeo Plana. It states that

References

  1. Lerch, Mathias (1887), "Note sur la fonction ", Acta Mathematica (in French), 11 (1–4): 19–24, doi: 10.1007/BF02612318 , JFM   19.0438.01, MR   1554747, S2CID   121885446
  2. https://arxiv.org/pdf/math/0506319.pdf
  3. 1 2 3 4 5 6 Guillera & Sondow 2008 , p. 248–249
  4. Weisstein, Eric W. "Inverse Tangent Integral". mathworld.wolfram.com. Retrieved 2024-10-13.
  5. The polygamma function has the series representation which holds for integer values of m > 0 and any complex z not equal to a negative integer.
  6. Weisstein, Eric W. "Polygamma Function". mathworld.wolfram.com. Retrieved 2024-10-14.
  7. Weisstein, Eric W. "Clausen Function". mathworld.wolfram.com. Retrieved 2024-10-14.
  8. Bateman & Erdélyi 1953 , p. 27
  9. Guillera & Sondow 2008 , Lemma 2.1 and 2.2
  10. Bateman & Erdélyi 1953 , p. 28
  11. "The Analytic Continuation of the Lerch Transcendent and the Riemann Zeta Function". 27 April 2020. Retrieved 28 April 2020.
  12. B. R. Johnson (1974). "Generalized Lerch zeta function". Pacific J. Math. 53 (1): 189–193. doi: 10.2140/pjm.1974.53.189 .
  13. Gottschalk, J. E.; Maslen, E. N. (1988). "Reduction formulae for generalized hypergeometric functions of one variable". J. Phys. A. 21 (9): 1983–1998. Bibcode:1988JPhA...21.1983G. doi:10.1088/0305-4470/21/9/015.
  14. Ferreira, Chelo; López, José L. (October 2004). "Asymptotic expansions of the Hurwitz–Lerch zeta function". Journal of Mathematical Analysis and Applications. 298 (1): 210–224. doi: 10.1016/j.jmaa.2004.05.040 .
  15. Cai, Xing Shi; López, José L. (10 June 2019). "A note on the asymptotic expansion of the Lerch's transcendent". Integral Transforms and Special Functions. 30 (10): 844–855. arXiv: 1806.01122 . doi:10.1080/10652469.2019.1627530. S2CID   119619877.