In mathematics, the Dirichlet beta function (also known as the Catalan beta function) is a special function, closely related to the Riemann zeta function. It is a particular Dirichlet L-function, the L-function for the alternating character of period four.
The Dirichlet beta function is defined as
or, equivalently,
In each case, it is assumed that Re(s) > 0.
Alternatively, the following definition, in terms of the Hurwitz zeta function, is valid in the whole complex s-plane: [1]
Another equivalent definition, in terms of the Lerch transcendent, is:
which is once again valid for all complex values of s.
The Dirichlet beta function can also be written in terms of the polylogarithm function:
Also the series representation of Dirichlet beta function can be formed in terms of the polygamma function
but this formula is only valid at positive integer values of .
It is also the simplest example of a series non-directly related to which can also be factorized as an Euler product, thus leading to the idea of Dirichlet character defining the exact set of Dirichlet series having a factorization over the prime numbers.
At least for Re(s) ≥ 1:
where p≡1 mod 4 are the primes of the form 4n+1 (5,13,17,...) and p≡3 mod 4 are the primes of the form 4n+3 (3,7,11,...). This can be written compactly as
The functional equation extends the beta function to the left side of the complex plane Re(s) ≤ 0. It is given by
where Γ(s) is the gamma function. It was conjectured by Euler in 1749 and proved by Malmsten in 1842. [2]
For every odd positive integer , the following equation holds: [3]
where is the n-th Euler Number. This yields:
For the values of the Dirichlet beta function at even positive integers no elementary closed form is known, and no method has yet been found for determining the arithmetic nature of even beta values (similarly to the Riemann zeta function at odd integers greater than 3). The number is known as Catalan's constant.
It has been proven that infinitely many numbers of the form [4] and at least one of the numbers are irrational. [5]
The even beta values may be given in terms of the polygamma functions and the Bernoulli numbers: [6]
We can also express the beta function for positive in terms of the inverse tangent integral:
For every positive integer k:[ citation needed ]
where is the Euler zigzag number.
s | approximate value β(s) | OEIS |
---|---|---|
1 | 0.7853981633974483096156608 | A003881 |
2 | 0.9159655941772190150546035 | A006752 |
3 | 0.9689461462593693804836348 | A153071 |
4 | 0.9889445517411053361084226 | A175572 |
5 | 0.9961578280770880640063194 | A175571 |
6 | 0.9986852222184381354416008 | A175570 |
7 | 0.9995545078905399094963465 | A258814 |
8 | 0.9998499902468296563380671 | A258815 |
9 | 0.9999496841872200898213589 | A258816 |
For negative odd integers, the function is zero:
For every negative even integer it holds: [3]
It further is:
We have: [3]
with being Euler's constant and being Catalan's constant. The last identity was derived by Malmsten in 1842. [2]
In mathematics, the gamma function is the most common extension of the factorial function to complex numbers. Derived by Daniel Bernoulli, the gamma function is defined for all complex numbers except non-positive integers, and for every positive integer , The gamma function can be defined via a convergent improper integral for complex numbers with positive real part:
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as for , and its analytic continuation elsewhere.
Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:
In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers:
Integration is the basic operation in integral calculus. While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful. This page lists some of the most common antiderivatives.
In mathematics, a Dirichlet L-series is a function of the form
In mathematics, the Clausen function, introduced by Thomas Clausen, is a transcendental, special function of a single variable. It can variously be expressed in the form of a definite integral, a trigonometric series, and various other forms. It is intimately connected with the polylogarithm, inverse tangent integral, polygamma function, Riemann zeta function, Dirichlet eta function, and Dirichlet beta function.
In mathematics, the polygamma function of order m is a meromorphic function on the complex numbers defined as the (m + 1)th derivative of the logarithm of the gamma function:
In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:
In mathematics, the Hurwitz zeta function is one of the many zeta functions. It is formally defined for complex variables s with Re(s) > 1 and a ≠ 0, −1, −2, … by
In mathematics, in the area of analytic number theory, the Dirichlet eta function is defined by the following Dirichlet series, which converges for any complex number having real part > 0:
In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Lis(z) of order s and argument z. Only for special values of s does the polylogarithm reduce to an elementary function such as the natural logarithm or a rational function. In quantum statistics, the polylogarithm function appears as the closed form of integrals of the Fermi–Dirac distribution and the Bose–Einstein distribution, and is also known as the Fermi–Dirac integral or the Bose–Einstein integral. In quantum electrodynamics, polylogarithms of positive integer order arise in the calculation of processes represented by higher-order Feynman diagrams.
In mathematics, the Riemann–Siegel theta function is defined in terms of the gamma function as
In mathematics, the Stieltjes constants are the numbers that occur in the Laurent series expansion of the Riemann zeta function:
In mathematics, the Glaisher–Kinkelin constant or Glaisher's constant, typically denoted A, is a mathematical constant, related to special functions like the K-function and the Barnes G-function. The constant also appears in a number of sums and integrals, especially those involving the gamma function and the Riemann zeta function. It is named after mathematicians James Whitbread Lee Glaisher and Hermann Kinkelin.
In mathematics, the lemniscate constantϖ is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of π for the circle. Equivalently, the perimeter of the lemniscate is 2ϖ. The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755. It also appears in evaluation of the gamma and beta function at certain rational values. The symbol ϖ is a cursive variant of π; see Pi § Variant pi.
In mathematics, the Riemann zeta function is a function in complex analysis, which is also important in number theory. It is often denoted and is named after the mathematician Bernhard Riemann. When the argument is a real number greater than one, the zeta function satisfies the equation It can therefore provide the sum of various convergent infinite series, such as Explicit or numerically efficient formulae exist for at integer arguments, all of which have real values, including this example. This article lists these formulae, together with tables of values. It also includes derivatives and some series composed of the zeta function at integer arguments.
Carl Johan Malmsten was a Swedish mathematician and politician. He is notable for early research into the theory of functions of a complex variable, for the evaluation of several important logarithmic integrals and series, for his studies in the theory of Zeta-function related series and integrals, as well as for helping Mittag-Leffler start the journal Acta Mathematica. Malmsten became Docent in 1840, and then, Professor of mathematics at the Uppsala University in 1842. He was elected a member of the Royal Swedish Academy of Sciences in 1844. He was also a minister without portfolio in 1859–1866 and Governor of Skaraborg County in 1866–1879.