Inverse tangent integral

Last updated

The inverse tangent integral is a special function, defined by:

Contents

Equivalently, it can be defined by a power series, or in terms of the dilogarithm, a closely related special function.

Definition

The inverse tangent integral is defined by:

The arctangent is taken to be the principal branch; that is, −π/2 < arctan(t) < π/2 for all real t. [1]

Its power series representation is

which is absolutely convergent for [1]

The inverse tangent integral is closely related to the dilogarithm and can be expressed simply in terms of it:

That is,

for all real x. [1]

Properties

The inverse tangent integral is an odd function: [1]

The values of Ti2(x) and Ti2(1/x) are related by the identity

valid for all x > 0 (or, more generally, for Re(x) > 0). This can be proven by differentiating and using the identity . [2] [3]

The special value Ti2(1) is Catalan's constant . [3]

Generalizations

Similar to the polylogarithm , the function

is defined analogously. This satisfies the recurrence relation: [4]

By this series representation it can be seen that the special values , where represents the Dirichlet beta function.

Relation to other special functions

The inverse tangent integral is related to the Legendre chi function by: [1]

Note that can be expressed as , similar to the inverse tangent integral but with the inverse hyperbolic tangent instead.

The inverse tangent integral can also be written in terms of the Lerch transcendent [5]

History

The notation Ti2 and Tin is due to Lewin. Spence (1809) [6] studied the function, using the notation . The function was also studied by Ramanujan. [2]

Related Research Articles

In mathematics, Catalan's constantG, is defined by

<span class="mw-page-title-main">Sigmoid function</span> Mathematical function having a characteristic S-shaped curve or sigmoid curve

A sigmoid function is any mathematical function whose graph has a characteristic S-shaped curve or sigmoid curve.

In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. It is frequently used to transform the antiderivative of a product of functions into an antiderivative for which a solution can be more easily found. The rule can be thought of as an integral version of the product rule of differentiation; it is indeed derived using the product rule.

Integration is the basic operation in integral calculus. While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful. This page lists some of the most common antiderivatives.

<span class="mw-page-title-main">Gudermannian function</span> Mathematical function relating circular and hyperbolic functions

In mathematics, the Gudermannian function relates a hyperbolic angle measure to a circular angle measure called the gudermannian of and denoted . The Gudermannian function reveals a close relationship between the circular functions and hyperbolic functions. It was introduced in the 1760s by Johann Heinrich Lambert, and later named for Christoph Gudermann who also described the relationship between circular and hyperbolic functions in 1830. The gudermannian is sometimes called the hyperbolic amplitude as a limiting case of the Jacobi elliptic amplitude when parameter

<span class="mw-page-title-main">Inverse trigonometric functions</span> Inverse functions of sin, cos, tan, etc.

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

<span class="mw-page-title-main">Clausen function</span> Transcendental single-variable function

In mathematics, the Clausen function, introduced by Thomas Clausen, is a transcendental, special function of a single variable. It can variously be expressed in the form of a definite integral, a trigonometric series, and various other forms. It is intimately connected with the polylogarithm, inverse tangent integral, polygamma function, Riemann zeta function, Dirichlet eta function, and Dirichlet beta function.

<span class="mw-page-title-main">Polylogarithm</span> Special mathematical function

In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function Lis(z) of order s and argument z. Only for special values of s does the polylogarithm reduce to an elementary function such as the natural logarithm or a rational function. In quantum statistics, the polylogarithm function appears as the closed form of integrals of the Fermi–Dirac distribution and the Bose–Einstein distribution, and is also known as the Fermi–Dirac integral or the Bose–Einstein integral. In quantum electrodynamics, polylogarithms of positive integer order arise in the calculation of processes represented by higher-order Feynman diagrams.

<span class="mw-page-title-main">Exponential integral</span> Special function defined by an integral

In mathematics, the exponential integral Ei is a special function on the complex plane.

<span class="mw-page-title-main">Dirichlet integral</span> Integral of sin(x)/x from 0 to infinity.

In mathematics, there are several integrals known as the Dirichlet integral, after the German mathematician Peter Gustav Lejeune Dirichlet, one of which is the improper integral of the sinc function over the positive real line:

<span class="mw-page-title-main">Rectangular function</span> Function whose graph is 0, then 1, then 0 again, in an almost-everywhere continuous way

The rectangular function is defined as

In mathematics, the Lerch zeta function, sometimes called the Hurwitz–Lerch zeta function, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about the function in 1887.

<span class="mw-page-title-main">Dilogarithm</span> Special case of the polylogarithm

In mathematics, the dilogarithm (or Spence's function), denoted as Li2(z), is a particular case of the polylogarithm. Two related special functions are referred to as Spence's function, the dilogarithm itself:

<span class="mw-page-title-main">Characteristic function (probability theory)</span> Fourier transform of the probability density function

In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution. If a random variable admits a probability density function, then the characteristic function is the Fourier transform of the probability density function. Thus it provides an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions. There are particularly simple results for the characteristic functions of distributions defined by the weighted sums of random variables.

<span class="mw-page-title-main">Lemniscate elliptic functions</span> Mathematical functions

In mathematics, the lemniscate elliptic functions are elliptic functions related to the arc length of the lemniscate of Bernoulli. They were first studied by Giulio Fagnano in 1718 and later by Leonhard Euler and Carl Friedrich Gauss, among others.

This is a summary of differentiation rules, that is, rules for computing the derivative of a function in calculus.

In integral calculus, the tangent half-angle substitution is a change of variables used for evaluating integrals, which converts a rational function of trigonometric functions of into an ordinary rational function of by setting . This is the one-dimensional stereographic projection of the unit circle parametrized by angle measure onto the real line. The general transformation formula is:

In mathematics, the Abel–Plana formula is a summation formula discovered independently by Niels Henrik Abel and Giovanni Antonio Amedeo Plana. It states that

In analytic number theory, a Dirichlet series, or Dirichlet generating function (DGF), of a sequence is a common way of understanding and summing arithmetic functions in a meaningful way. A little known, or at least often forgotten about, way of expressing formulas for arithmetic functions and their summatory functions is to perform an integral transform that inverts the operation of forming the DGF of a sequence. This inversion is analogous to performing an inverse Z-transform to the generating function of a sequence to express formulas for the series coefficients of a given ordinary generating function.

References

  1. 1 2 3 4 5 Lewin 1981 , pp. 38–39, Section 2.1
  2. 1 2 Ramanujan, S. (1915). "On the integral ". Journal of the Indian Mathematical Society. 7: 93–96. Appears in: Hardy, G. H.; Seshu Aiyar, P. V.; Wilson, B. M., eds. (1927). Collected Papers of Srinivasa Ramanujan. pp. 40–43.
  3. 1 2 Lewin 1981 , pp. 39–40, Section 2.2
  4. Lewin 1981 , p. 190, Section 7.1.2
  5. Weisstein, Eric W. "Inverse Tangent Integral". MathWorld .
  6. Spence, William (1809). An essay on the theory of the various orders of logarithmic transcendents; with an inquiry into their applications to the integral calculus and the summation of series. London.