Euler numbers

Last updated

In mathematics, the Euler numbers are a sequence En of integers (sequence A122045 in the OEIS ) defined by the Taylor series expansion

Contents

,

where is the hyperbolic cosine function. The Euler numbers are related to a special value of the Euler polynomials, namely:

The Euler numbers appear in the Taylor series expansions of the secant and hyperbolic secant functions. The latter is the function in the definition. They also occur in combinatorics, specifically when counting the number of alternating permutations of a set with an even number of elements.

Examples

The odd-indexed Euler numbers are all zero. The even-indexed ones (sequence A028296 in the OEIS ) have alternating signs. Some values are:

E0=1
E2=−1
E4=5
E6=−61
E8=1385
E10=−50521
E12=2702765
E14=−199360981
E16=19391512145
E18=−2404879675441

Some authors re-index the sequence in order to omit the odd-numbered Euler numbers with value zero, or change all signs to positive (sequence A000364 in the OEIS ). This article adheres to the convention adopted above.

Explicit formulas

In terms of Stirling numbers of the second kind

Following two formulas express the Euler numbers in terms of Stirling numbers of the second kind [1] [2]

where denotes the Stirling numbers of the second kind, and denotes the rising factorial.

As a double sum

Following two formulas express the Euler numbers as double sums [3]

As an iterated sum

An explicit formula for Euler numbers is: [4]

where i denotes the imaginary unit with i2 = −1.

As a sum over partitions

The Euler number E2n can be expressed as a sum over the even partitions of 2n, [5]

as well as a sum over the odd partitions of 2n − 1, [6]

where in both cases K = k1 + ··· + kn and

is a multinomial coefficient. The Kronecker deltas in the above formulas restrict the sums over the ks to 2k1 + 4k2 + ··· + 2nkn = 2n and to k1 + 3k2 + ··· + (2n − 1)kn = 2n − 1, respectively.

As an example,

As a determinant

E2n is given by the determinant

As an integral

E2n is also given by the following integrals:

Congruences

W. Zhang [7] obtained the following combinational identities concerning the Euler numbers, for any prime , we have

W. Zhang and Z. Xu [8] proved that, for any prime and integer , we have

where is the Euler's totient function.

Asymptotic approximation

The Euler numbers grow quite rapidly for large indices as they have the following lower bound

Euler zigzag numbers

The Taylor series of is

where An is the Euler zigzag numbers, beginning with

1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, 353792, 2702765, 22368256, 199360981, 1903757312, 19391512145, 209865342976, 2404879675441, 29088885112832, ... (sequence A000111 in the OEIS )

For all even n,

where En is the Euler number; and for all odd n,

where Bn is the Bernoulli number.

For every n,

[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Binomial coefficient</span> Number of subsets of a given size

In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers nk ≥ 0 and is written It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n; this coefficient can be computed by the multiplicative formula

In mathematics, the Bernoulli numbersBn are a sequence of rational numbers which occur frequently in analysis. The Bernoulli numbers appear in the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of m-th powers of the first n positive integers, in the Euler–Maclaurin formula, and in expressions for certain values of the Riemann zeta function.

<span class="mw-page-title-main">Riemann zeta function</span> Analytic function in mathematics

The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as

<span class="mw-page-title-main">Trigonometric functions</span> Functions of an angle

In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.

<span class="mw-page-title-main">Hyperbolic functions</span> Collective name of 6 mathematical functions

In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, similarly to how the derivatives of sin(t) and cos(t) are cos(t) and –sin(t) respectively, the derivatives of sinh(t) and cosh(t) are cosh(t) and +sinh(t) respectively.

<span class="mw-page-title-main">Bernoulli polynomials</span> Polynomial sequence

In mathematics, the Bernoulli polynomials, named after Jacob Bernoulli, combine the Bernoulli numbers and binomial coefficients. They are used for series expansion of functions, and with the Euler–MacLaurin formula.

Proof that 22/7 exceeds <span class="texhtml mvar" style="font-style:italic;">π</span> Mathematical proof related to the constant pi

Proofs of the mathematical result that the rational number 22/7 is greater than π (pi) date back to antiquity. One of these proofs, more recently developed but requiring only elementary techniques from calculus, has attracted attention in modern mathematics due to its mathematical elegance and its connections to the theory of Diophantine approximations. Stephen Lucas calls this proof "one of the more beautiful results related to approximating π". Julian Havil ends a discussion of continued fraction approximations of π with the result, describing it as "impossible to resist mentioning" in that context.

<span class="mw-page-title-main">Digamma function</span> Mathematical function

In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:

The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.

<span class="mw-page-title-main">Double factorial</span> Mathematical function

In mathematics, the double factorial of a number n, denoted by n, is the product of all the positive integers up to n that have the same parity as n. That is,

In mathematics, the Leibniz formula for π, named after Gottfried Wilhelm Leibniz, states that

<span class="mw-page-title-main">Stieltjes constants</span>

In mathematics, the Stieltjes constants are the numbers that occur in the Laurent series expansion of the Riemann zeta function:

In mathematics, the Riemann zeta function is a function in complex analysis, which is also important in number theory. It is often denoted and is named after the mathematician Bernhard Riemann. When the argument is a real number greater than one, the zeta function satisfies the equation

<span class="mw-page-title-main">Lemniscate elliptic functions</span> Mathematical functions

In mathematics, the lemniscate elliptic functions are elliptic functions related to the arc length of the lemniscate of Bernoulli. They were first studied by Giulio Fagnano in 1718 and later by Leonhard Euler and Carl Friedrich Gauss, among others.

<span class="mw-page-title-main">Sine and cosine</span> Fundamental trigonometric functions

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .

In complex analysis, a partial fraction expansion is a way of writing a meromorphic function as an infinite sum of rational functions and polynomials. When is a rational function, this reduces to the usual method of partial fractions.

<span class="mw-page-title-main">Carl Johan Malmsten</span> Swedish mathematician and politician (1814–1886)

Carl Johan Malmsten was a Swedish mathematician and politician. He is notable for early research into the theory of functions of a complex variable, for the evaluation of several important logarithmic integrals and series, for his studies in the theory of Zeta-function related series and integrals, as well as for helping Mittag-Leffler start the journal Acta Mathematica. Malmsten became Docent in 1840, and then, Professor of mathematics at the Uppsala University in 1842. He was elected a member of the Royal Swedish Academy of Sciences in 1844. He was also a minister without portfolio in 1859–1866 and Governor of Skaraborg County in 1866–1879.

In mathematics, a transformation of a sequence's generating function provides a method of converting the generating function for one sequence into a generating function enumerating another. These transformations typically involve integral formulas applied to a sequence generating function or weighted sums over the higher-order derivatives of these functions.

References

  1. Jha, Sumit Kumar (2019). "A new explicit formula for Bernoulli numbers involving the Euler number". Moscow Journal of Combinatorics and Number Theory. 8 (4): 385–387. doi:10.2140/moscow.2019.8.389. S2CID   209973489.
  2. Jha, Sumit Kumar (15 November 2019). "A new explicit formula for the Euler numbers in terms of the Stirling numbers of the second kind".
  3. Wei, Chun-Fu; Qi, Feng (2015). "Several closed expressions for the Euler numbers". Journal of Inequalities and Applications. 219 (2015). doi: 10.1186/s13660-015-0738-9 .
  4. Tang, Ross (2012-05-11). "An Explicit Formula for the Euler zigzag numbers (Up/down numbers) from power series" (PDF). Archived (PDF) from the original on 2014-04-09.
  5. Vella, David C. (2008). "Explicit Formulas for Bernoulli and Euler Numbers". Integers. 8 (1): A1.
  6. Malenfant, J. (2011). "Finite, Closed-form Expressions for the Partition Function and for Euler, Bernoulli, and Stirling Numbers". arXiv: 1103.1585 [math.NT].
  7. Zhang, W.P. (1998). "Some identities involving the Euler and the central factorial numbers" (PDF). Fibonacci Quarterly. 36 (4): 154–157. Archived (PDF) from the original on 2019-11-23.
  8. Zhang, W.P.; Xu, Z.F. (2007). "On a conjecture of the Euler numbers". Journal of Number Theory. 127 (2): 283–291. doi: 10.1016/j.jnt.2007.04.004 .