Residually finite group

Last updated

In the mathematical field of group theory, a group G is residually finite or finitely approximable if for every element g that is not the identity in G there is a homomorphism h from G to a finite group, such that

Contents

[1]

There are a number of equivalent definitions:

Examples

Examples of groups that are residually finite are finite groups, free groups, finitely generated nilpotent groups, polycyclic-by-finite groups, finitely generated linear groups, and fundamental groups of compact 3-manifolds.

Subgroups of residually finite groups are residually finite, and direct products of residually finite groups are residually finite. Any inverse limit of residually finite groups is residually finite. In particular, all profinite groups are residually finite.

Examples of non-residually finite groups can be constructed using the fact that all finitely generated residually finite groups are Hopfian groups. For example the Baumslag–Solitar group B(2,3) is not Hopfian, and therefore not residually finite.

Profinite topology

Every group G may be made into a topological group by taking as a basis of open neighbourhoods of the identity, the collection of all normal subgroups of finite index in G. The resulting topology is called the profinite topology on G. A group is residually finite if, and only if, its profinite topology is Hausdorff.

A group whose cyclic subgroups are closed in the profinite topology is said to be . Groups each of whose finitely generated subgroups are closed in the profinite topology are called subgroup separable (also LERF, for locally extended residually finite). A group in which every conjugacy class is closed in the profinite topology is called conjugacy separable.

Varieties of residually finite groups

One question is: what are the properties of a variety all of whose groups are residually finite? Two results about these are:

See also

Related Research Articles

<span class="mw-page-title-main">Normal subgroup</span> Subgroup invariant under conjugation

In abstract algebra, a normal subgroup is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup of the group is normal in if and only if for all and The usual notation for this relation is

In mathematics, a profinite group is a topological group that is in a certain sense assembled from a system of finite groups.

<span class="texhtml mvar" style="font-style:italic;">p</span>-group Group in which the order of every element is a power of p

In mathematics, specifically group theory, given a prime number p, a p-group is a group in which the order of every element is a power of p. That is, for each element g of a p-group G, there exists a nonnegative integer n such that the product of pn copies of g, and not fewer, is equal to the identity element. The orders of different elements may be different powers of p.

<span class="mw-page-title-main">Subgroup</span> Subset of a group that forms a group itself

In group theory, a branch of mathematics, given a group G under a binary operation ∗, a subset H of G is called a subgroup of G if H also forms a group under the operation ∗. More precisely, H is a subgroup of G if the restriction of ∗ to H × H is a group operation on H. This is often denoted HG, read as "H is a subgroup of G".

<span class="mw-page-title-main">Symmetric group</span> Type of group in abstract algebra

In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group defined over a finite set of symbols consists of the permutations that can be performed on the symbols. Since there are such permutation operations, the order of the symmetric group is .

<span class="mw-page-title-main">Solvable group</span> Group that can be constructed from abelian groups using extensions

In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup.

<span class="mw-page-title-main">Direct sum of groups</span> Means of constructing a group from two subgroups

In mathematics, a group G is called the direct sum of two normal subgroups with trivial intersection if it is generated by the subgroups. In abstract algebra, this method of construction of groups can be generalized to direct sums of vector spaces, modules, and other structures; see the article direct sum of modules for more information. A group which can be expressed as a direct sum of non-trivial subgroups is called decomposable, and if a group cannot be expressed as such a direct sum then it is called indecomposable.

<span class="mw-page-title-main">Glossary of group theory</span>

A group is a set together with an associative operation which admits an identity element and such that every element has an inverse.

In mathematics, a von Neumann algebra or W*-algebra is a *-algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. It is a special type of C*-algebra.

<span class="mw-page-title-main">Order (group theory)</span> Cardinality of a mathematical group, or of the subgroup generated by an element

In mathematics, the order of a finite group is the number of its elements. If a group is not finite, one says that its order is infinite. The order of an element of a group is the order of the subgroup generated by the element. If the group operation is denoted as a multiplication, the order of an element a of a group, is thus the smallest positive integer m such that am = e, where e denotes the identity element of the group, and am denotes the product of m copies of a. If no such m exists, the order of a is infinite.

<span class="mw-page-title-main">Reductive group</span>

In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation with finite kernel which is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n). Simple algebraic groups and (more generally) semisimple algebraic groups are reductive.

<span class="mw-page-title-main">Frobenius group</span>

In mathematics, a Frobenius group is a transitive permutation group on a finite set, such that no non-trivial element fixes more than one point and some non-trivial element fixes a point. They are named after F. G. Frobenius.

In mathematics, a pro-p group is a profinite group such that for any open normal subgroup the quotient group is a p-group. Note that, as profinite groups are compact, the open subgroups are exactly the closed subgroups of finite index, so that the discrete quotient group is always finite.

In mathematics, the fundamental theorem of Galois theory is a result that describes the structure of certain types of field extensions in relation to groups. It was proved by Évariste Galois in his development of Galois theory.

<span class="mw-page-title-main">Direct product of groups</span>

In mathematics, specifically in group theory, the direct product is an operation that takes two groups G and H and constructs a new group, usually denoted G × H. This operation is the group-theoretic analogue of the Cartesian product of sets and is one of several important notions of direct product in mathematics.

In mathematics, field arithmetic is a subject that studies the interrelations between arithmetic properties of a field and its absolute Galois group. It is an interdisciplinary subject as it uses tools from algebraic number theory, arithmetic geometry, algebraic geometry, model theory, the theory of finite groups and of profinite groups.

In the mathematical field of group theory, the Kurosh subgroup theorem describes the algebraic structure of subgroups of free products of groups. The theorem was obtained by Alexander Kurosh, a Russian mathematician, in 1934. Informally, the theorem says that every subgroup of a free product is itself a free product of a free group and of its intersections with the conjugates of the factors of the original free product.

In mathematics, and more precisely in topology, the mapping class group of a surface, sometimes called the modular group or Teichmüller modular group, is the group of homeomorphisms of the surface viewed up to continuous deformation. It is of fundamental importance for the study of 3-manifolds via their embedded surfaces and is also studied in algebraic geometry in relation to moduli problems for curves.

In the mathematical subject of group theory, a co-Hopfian group is a group that is not isomorphic to any of its proper subgroups. The notion is dual to that of a Hopfian group, named after Heinz Hopf.

In mathematics, and more precisely in semigroup theory, a variety of finite semigroups is a class of semigroups having some nice algebraic properties. Those classes can be defined in two distinct ways, using either algebraic notions or topological notions. Varieties of finite monoids, varieties of finite ordered semigroups and varieties of finite ordered monoids are defined similarly.

References

  1. Magnus, Wilhelm (March 1969). "Residually finite groups". Bulletin of the American Mathematical Society. 75 (2): 305–316. ISSN   0002-9904.