Combinatorial group theory

Last updated

In mathematics, combinatorial group theory is the theory of free groups, and the concept of a presentation of a group by generators and relations. It is much used in geometric topology, the fundamental group of a simplicial complex having in a natural and geometric way such a presentation. A very closely related topic is geometric group theory, which today largely subsumes combinatorial group theory, using techniques from outside combinatorics besides.

Mathematics field of study concerning quantity, patterns and change

Mathematics includes the study of such topics as quantity, structure, space, and change.

Free group

In mathematics, the free groupFS over a given set S consists of all expressions that can be built from members of S, considering two expressions different unless their equality follows from the group axioms. The members of S are called generators of FS. An arbitrary group G is called free if it is isomorphic to FS for some subset S of G, that is, if there is a subset S of G such that every element of G can be written in one and only one way as a product of finitely many elements of S and their inverses.

In mathematics, one method of defining a group is by a presentation. One specifies a set S of generators so that every element of the group can be written as a product of powers of some of these generators, and a set R of relations among those generators. We then say G has presentation

It also comprises a number of algorithmically insoluble problems, most notably the word problem for groups; and the classical Burnside problem.

In mathematics, especially in the area of abstract algebra known as combinatorial group theory, the word problem for a finitely generated group G is the algorithmic problem of deciding whether two words in the generators represent the same element. More precisely, if A is a finite set of generators for G then the word problem is the membership problem for the formal language of all words in A and a formal set of inverses that map to the identity under the natural map from the free monoid with involution on A to the group G. If B is another finite generating set for G, then the word problem over the generating set B is equivalent to the word problem over the generating set A. Thus one can speak unambiguously of the decidability of the word problem for the finitely generated group G.

Burnside problem mathematical problem in group theory

The Burnside problem, posed by William Burnside in 1902 and one of the oldest and most influential questions in group theory, asks whether a finitely generated group in which every element has finite order must necessarily be a finite group. Evgeny Golod and Igor Shafarevich provided a counter-example in 1964. The problem has many variants that differ in the additional conditions imposed on the orders of the group elements.

History

See ( Chandler & Magnus 1982 ) for a detailed history of combinatorial group theory.

A proto-form is found in the 1856 icosian calculus of William Rowan Hamilton, where he studied the icosahedral symmetry group via the edge graph of the dodecahedron.

The icosian calculus is a non-commutative algebraic structure discovered by the Irish mathematician William Rowan Hamilton in 1856. In modern terms, he gave a group presentation of the icosahedral rotation group by generators and relations.

William Rowan Hamilton Irish physicist, astronomer, and mathematician

Sir William Rowan Hamilton MRIA was an Irish mathematician. While still an undergraduate he was appointed Andrews professor of Astronomy and Royal Astronomer of Ireland, and lived at Dunsink Observatory. He made important contributions to optics, classical mechanics and algebra. Although Hamilton was not a physicist–he regarded himself as a pure mathematician–his work was of major importance to physics, particularly his reformulation of Newtonian mechanics, now called Hamiltonian mechanics. This work has proven central to the modern study of classical field theories such as electromagnetism, and to the development of quantum mechanics. In pure mathematics, he is best known as the inventor of quaternions.

Icosahedral symmetry

A regular icosahedron has 60 rotational symmetries, and a symmetry order of 120 including transformations that combine a reflection and a rotation. A regular dodecahedron has the same set of symmetries, since it is the dual of the icosahedron.

The foundations of combinatorial group theory were laid by Walther von Dyck, student of Felix Klein, in the early 1880s, who gave the first systematic study of groups by generators and relations. [1]

Walther von Dyck German mathematician

Walther Franz Anton von Dyck, born Dyck and later ennobled, was a German mathematician. He is credited with being the first to define a mathematical group, in the modern sense in. He laid the foundations of combinatorial group theory, being the first to systematically study a group by generators and relations.

Felix Klein German mathematician, author of the Erlangen Program

Christian Felix Klein was a German mathematician and mathematics educator, known for his work with group theory, complex analysis, non-Euclidean geometry, and on the associations between geometry and group theory. His 1872 Erlangen Program, classifying geometries by their basic symmetry groups, was an influential synthesis of much of the mathematics of the time.

Related Research Articles

Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics, from evolutionary biology to computer science, etc.

Discrete mathematics study of discrete mathematical structures

Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous. In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such as integers, graphs, and statements in logic – do not vary smoothly in this way, but have distinct, separated values. Discrete mathematics therefore excludes topics in "continuous mathematics" such as calculus or Euclidean geometry. Discrete objects can often be enumerated by integers. More formally, discrete mathematics has been characterized as the branch of mathematics dealing with countable sets. However, there is no exact definition of the term "discrete mathematics." Indeed, discrete mathematics is described less by what is included than by what is excluded: continuously varying quantities and related notions.

Group theory branch of mathematics that studies the algebraic properties of groups

In mathematics and abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right.

Cayley graph graph whose vertices and edges represent the elements of a group and their products with the generators of the group

In mathematics, a Cayley graph, also known as a Cayley colour graph, Cayley diagram, group diagram, or colour group is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem and uses a specified, usually finite, set of generators for the group. It is a central tool in combinatorial and geometric group theory.

Discrete geometry branch of geometry that studies combinatorial properties and constructive methods of discrete geometric objects

Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object.

Geometric group theory area in mathematics devoted to the study of finitely generated groups

Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these groups act.

In abstract algebra, the conjugacy problem for a group G with a given presentation is the decision problem of determining, given two words x and y in G, whether or not they represent conjugate elements of G. That is, the problem is to determine whether there exists an element z of G such that

Combinatorial commutative algebra is a relatively new, rapidly developing mathematical discipline. As the name implies, it lies at the intersection of two more established fields, commutative algebra and combinatorics, and frequently uses methods of one to address problems arising in the other. Less obviously, polyhedral geometry plays a significant role.

In mathematics, the Freiheitssatz is a result in the presentation theory of groups, stating that certain subgroups of a one-relator group are free groups.

In group theory, a word is any written product of group elements and their inverses. For example, if x, y and z are elements of a group G, then xy, z−1xzz and y−1zxx−1yz−1 are words in the set {xyz}. Two different words may evaluate to the same value in G, or even in every group. Words play an important role in the theory of free groups and presentations, and are central objects of study in combinatorial group theory.

In geometric group theory, a presentation complex is a 2-dimensional cell complex associated to any presentation of a group G. The complex has a single vertex, and one loop at the vertex for each generator of G. There is one 2-cell for each relation in the presentation, with the boundary of the 2-cell attached along the appropriate word.

In abstract algebra, the group isomorphism problem is the decision problem of determining whether two given finite group presentations present isomorphic groups.

In mathematics, especially in the area of abstract algebra known as combinatorial group theory, Nielsen transformations, named after Jakob Nielsen, are certain automorphisms of a free group which are a non-commutative analogue of row reduction and one of the main tools used in studying free groups,. They were introduced in to prove that every subgroup of a free group is free, but are now used in a variety of mathematics, including computational group theory, k-theory, and knot theory. The textbook devotes all of chapter 3 to Nielsen transformations.

In group theory, a branch of mathematics, the Nielsen–Schreier theorem states that every subgroup of a free group is itself free. It is named after Jakob Nielsen and Otto Schreier.

In the mathematical area of geometric group theory, a van Kampen diagram is a planar diagram used to represent the fact that a particular word in the generators of a group given by a group presentation represents the identity element in that group.

In the mathematical subject of group theory, small cancellation theory studies groups given by group presentations satisfying small cancellation conditions, that is where defining relations have "small overlaps" with each other. Small cancellation conditions imply algebraic, geometric and algorithmic properties of the group. Finitely presented groups satisfying sufficiently strong small cancellation conditions are word hyperbolic and have word problem solvable by Dehn's algorithm. Small cancellation methods are also used for constructing Tarski monsters, and for solutions of Burnside's problem.

János Pach American mathematician

János Pach is a mathematician and computer scientist working in the fields of combinatorics and discrete and computational geometry.

In mathematical group theory, the automorphism group of a free group is a discrete group of automorphisms of a free group. The quotient by the inner automorphisms is the outer automorphism group of a free group, which is similar in some ways to the mapping class group of a surface.

References

  1. Stillwell, John (2002), Mathematics and its history, Springer, p.  374, ISBN   978-0-387-95336-6

Wilhelm Magnus was a German American mathematician. He made important contributions in combinatorial group theory, Lie algebras, mathematical physics, elliptic functions, and the study of tessellations.

International Standard Book Number Unique numeric book identifier

The International Standard Book Number (ISBN) is a numeric commercial book identifier which is intended to be unique. Publishers purchase ISBNs from an affiliate of the International ISBN Agency.