Icosian calculus

Last updated

The icosian calculus is a non-commutative algebraic structure discovered by the Irish mathematician William Rowan Hamilton in 1856. [1] [2] In modern terms, he gave a group presentation of the icosahedral rotation group by generators and relations.

Contents

Hamilton's discovery derived from his attempts to find an algebra of "triplets" or 3-tuples that he believed would reflect the three Cartesian axes. The symbols of the icosian calculus correspond to moves between vertices on a dodecahedron. (Hamilton originally thought in terms of moves between the faces of an icosahedron, which is equivalent by duality. This is the origin of the name "icosian". [3] ) Hamilton's work in this area resulted indirectly in the terms Hamiltonian circuit and Hamiltonian path in graph theory. [4] He also invented the icosian game as a means of illustrating and popularising his discovery.

Informal definition

Stereographic projection of dodecahedron used for Hamilton's icosian game Icosian grid small with labels2.svg
Stereographic projection of dodecahedron used for Hamilton's icosian game

The algebra is based on three symbols, , , and , that Hamilton described as "roots of unity", by which he meant that repeated application of any of them a particular number of times yields the identity, which he denoted by 1. Specifically, they satisfy the relations,

Hamilton gives one additional relation between the symbols,

which is to be understood as application of followed by application of . Hamilton points out that application in the reverse order produces a different result, implying that composition or multiplication of symbols is not generally commutative, although it is associative. The symbols generate a group of order 60, isomorphic to the group of rotations of a regular icosahedron or dodecahedron, and therefore to the alternating group of degree five. This, however, is not how Hamilton described them.

Hamilton drew comparisons between the icosians and his system of quaternions, but noted that, unlike quaternions, which can be added and multiplied, obeying a distributive law, the icosians could only, as far as he knew, be multiplied.

Hamilton understood his symbols by reference to the dodecahedron, which he represented in flattened form as a graph in the plane. The dodecahedron has 30 edges, and if arrows are placed on edges, there are two possible arrow directions for each edge, resulting in 60 directed edges. Each symbol corresponds to a permutation of the set of directed edges. The definitions below refer to the labeled diagram above. The notation represents a directed edge from vertex to vertex . Vertex is the tail of and vertex is its head.

Geometrical illustration of operation iota in icosian calculus Icosian calculus iota2.svg
Geometrical illustration of operation iota in icosian calculus

It is useful to define the symbol for the operation that produces the directed edge that results from making a left turn at the head of the directed edge to which the operation is applied. This symbol satisfies the relations

For example, the directed edge obtained by making a left turn from is . Indeed, applied to produces and applied to produces . Also, applied to produces and applied to produces .

These permutations are not rotations of the dodecahedron. Nevertheless, the group of permutations generated by these symbols is isomorphic to the rotation group of the dodecahedron, a fact that can be deduced from a specific feature of symmetric cubic graphs, of which the dodecahedron graph is an example. The rotation group of the dodecahedron has the property that for a given directed edge there is a unique rotation that sends that directed edge to any other specified directed edge. Hence by choosing a reference edge, say , a one-to-one correspondence between directed edges and rotations is established: let be the rotation that sends the reference edge to directed edge . (Indeed, there are 60 directed edges and 60 rotations.) The rotations are permutations of the set of directed edges of a different sort. Let denote the image of edge under the rotation . The icosian associated to sends the reference edge to the same directed edge as does , namely to . The result of applying that icosian to any other directed edge is . [5]

Application to Hamiltonian circuits on the edges of the dodecahedron

A word consisting of the symbols and corresponds to a sequence of right and left turns in the graph. Specifying such a word along with an initial directed edge therefore specifies a directed path along the edges of the dodecahedron. If the group element represented by the word equals the identity, then the path returns to the initial directed edge in the final step. If the additional requirement is imposed that every vertex of the graph be visited exactly once—specifically that every vertex occur exactly once as the head of a directed edge in the path—then a Hamiltonian circuit is obtained. Finding such a circuit was one of the challenges posed by Hamilton's icosian game. Hamilton exhibited the word with the properties described above. [5] Any of the 60 directed edges may serve as initial edge as a consequence of the symmetry of the dodecahedron, but only 30 distinct Hamiltonian circuits are obtained in this way, up to shift in starting point, because the word consists of the same sequence of 10 left and right turns repeated twice. The word with the roles of and interchanged has the same properties, but these give the same Hamiltonian cycles, up to shift in initial edge and reversal of direction. [3] Hence Hamilton's word accounts for all Hamiltonian cycles in the dodecahedron, whose number is known to be 30.

Legacy

The icosian calculus is one of the earliest examples of many mathematical ideas, including:

See also

Related Research Articles

Greek numerals, also known as Ionic, Ionian, Milesian, or Alexandrian numerals, is a system of writing numbers using the letters of the Greek alphabet. In modern Greece, they are still used for ordinal numbers and in contexts similar to those in which Roman numerals are still used in the Western world. For ordinary cardinal numbers, however, modern Greece uses Arabic numerals.

The Einstein–Hilbert action in general relativity is the action that yields the Einstein field equations through the stationary-action principle. With the (− + + +) metric signature, the gravitational part of the action is given as

<span class="mw-page-title-main">Strongly regular graph</span> Concept in graph theory

In graph theory, a strongly regular graph (SRG) is a regular graph G = (V, E) with v vertices and degree k such that for some given integers

In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another, except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value. A tensor density with a single index is called a vector density. A distinction is made among (authentic) tensor densities, pseudotensor densities, even tensor densities and odd tensor densities. Sometimes tensor densities with a negative weight W are called tensor capacity. A tensor density can also be regarded as a section of the tensor product of a tensor bundle with a density bundle.

In mathematics, the Bauer–Fike theorem is a standard result in the perturbation theory of the eigenvalue of a complex-valued diagonalizable matrix. In its substance, it states an absolute upper bound for the deviation of one perturbed matrix eigenvalue from a properly chosen eigenvalue of the exact matrix. Informally speaking, what it says is that the sensitivity of the eigenvalues is estimated by the condition number of the matrix of eigenvectors.

In theoretical physics, a source is an abstract concept, developed by Julian Schwinger, motivated by the physical effects of surrounding particles involved in creating or destroying another particle. So, one can perceive sources as the origin of the physical properties carried by the created or destroyed particle, and thus one can use this concept to study all quantum processes including the spacetime localized properties and the energy forms, i.e., mass and momentum, of the phenomena. The probability amplitude of the created or the decaying particle is defined by the effect of the source on a localized spacetime region such that the affected particle captures its physics depending on the tensorial and spinorial nature of the source. An example that Julian Schwinger referred to is the creation of meson due to the mass correlations among five mesons.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

In theoretical physics, the BRST formalism, or BRST quantization denotes a relatively rigorous mathematical approach to quantizing a field theory with a gauge symmetry. Quantization rules in earlier quantum field theory (QFT) frameworks resembled "prescriptions" or "heuristics" more than proofs, especially in non-abelian QFT, where the use of "ghost fields" with superficially bizarre properties is almost unavoidable for technical reasons related to renormalization and anomaly cancellation.

In mathematics, the structure tensor, also referred to as the second-moment matrix, is a matrix derived from the gradient of a function. It describes the distribution of the gradient in a specified neighborhood around a point and makes the information invariant to the observing coordinates. The structure tensor is often used in image processing and computer vision.

In mathematics, the notion of cylindric algebra, developed by Alfred Tarski, arises naturally in the algebraization of first-order logic with equality. This is comparable to the role Boolean algebras play for propositional logic. Cylindric algebras are Boolean algebras equipped with additional cylindrification operations that model quantification and equality. They differ from polyadic algebras in that the latter do not model equality.

In mathematics, the Jack function is a generalization of the Jack polynomial, introduced by Henry Jack. The Jack polynomial is a homogeneous, symmetric polynomial which generalizes the Schur and zonal polynomials, and is in turn generalized by the Heckman–Opdam polynomials and Macdonald polynomials.

In mathematics, the Fortuin–Kasteleyn–Ginibre (FKG) inequality is a correlation inequality, a fundamental tool in statistical mechanics and probabilistic combinatorics, due to Cees M. Fortuin, Pieter W. Kasteleyn, and Jean Ginibre. Informally, it says that in many random systems, increasing events are positively correlated, while an increasing and a decreasing event are negatively correlated. It was obtained by studying the random cluster model.

In mathematics, a Bratteli diagram is a combinatorial structure: a graph composed of vertices labelled by positive integers ("level") and unoriented edges between vertices having levels differing by one. The notion was introduced by Ola Bratteli in 1972 in the theory of operator algebras to describe directed sequences of finite-dimensional algebras: it played an important role in Elliott's classification of AF-algebras and the theory of subfactors. Subsequently Anatoly Vershik associated dynamical systems with infinite paths in such graphs.

The table of chords, created by the Greek astronomer, geometer, and geographer Ptolemy in Egypt during the 2nd century AD, is a trigonometric table in Book I, chapter 11 of Ptolemy's Almagest, a treatise on mathematical astronomy. It is essentially equivalent to a table of values of the sine function. It was the earliest trigonometric table extensive enough for many practical purposes, including those of astronomy. Since the 8th and 9th centuries, the sine and other trigonometric functions have been used in Islamic mathematics and astronomy, reforming the production of sine tables. Khwarizmi and Habash al-Hasib later produced a set of trigonometric tables.

Gauge theory gravity (GTG) is a theory of gravitation cast in the mathematical language of geometric algebra. To those familiar with general relativity, it is highly reminiscent of the tetrad formalism although there are significant conceptual differences. Most notably, the background in GTG is flat, Minkowski spacetime. The equivalence principle is not assumed, but instead follows from the fact that the gauge covariant derivative is minimally coupled. As in general relativity, equations structurally identical to the Einstein field equations are derivable from a variational principle. A spin tensor can also be supported in a manner similar to Einstein–Cartan–Sciama–Kibble theory. GTG was first proposed by Lasenby, Doran, and Gull in 1998 as a fulfillment of partial results presented in 1993. The theory has not been widely adopted by the rest of the physics community, who have mostly opted for differential geometry approaches like that of the related gauge gravitation theory.

In the Newman–Penrose (NP) formalism of general relativity, independent components of the Ricci tensors of a four-dimensional spacetime are encoded into seven Ricci scalars which consist of three real scalars , three complex scalars and the NP curvature scalar . Physically, Ricci-NP scalars are related with the energy–momentum distribution of the spacetime due to Einstein's field equation.

Molecular symmetry in physics and chemistry describes the symmetry present in molecules and the classification of molecules according to their symmetry. Molecular symmetry is a fundamental concept in the application of Quantum Mechanics in physics and chemistry, for example it can be used to predict or explain many of a molecule's properties, such as its dipole moment and its allowed spectroscopic transitions, without doing the exact rigorous calculations. To do this it is necessary to classify the states of the molecule using the irreducible representations from the character table of the symmetry group of the molecule. Among all the molecular symmetries, diatomic molecules show some distinct features and they are relatively easier to analyze.

<span class="mw-page-title-main">Asymmetric Laplace distribution</span> Continuous probability distribution

In probability theory and statistics, the asymmetric Laplace distribution (ALD) is a continuous probability distribution which is a generalization of the Laplace distribution. Just as the Laplace distribution consists of two exponential distributions of equal scale back-to-back about x = m, the asymmetric Laplace consists of two exponential distributions of unequal scale back to back about x = m, adjusted to assure continuity and normalization. The difference of two variates exponentially distributed with different means and rate parameters will be distributed according to the ALD. When the two rate parameters are equal, the difference will be distributed according to the Laplace distribution.

In mathematical physics, the Garnier integrable system, also known as the classical Gaudin model is a classical mechanical system discovered by René Garnier in 1919 by taking the 'Painlevé simplification' or 'autonomous limit' of the Schlesinger equations. It is a classical analogue to the quantum Gaudin model due to Michel Gaudin. The classical Gaudin models are integrable.

The chromatic symmetric function is a symmetric function invariant of graphs studied in algebraic graph theory, a branch of mathematics. It is the weight generating function for proper graph colorings, and was originally introduced by Richard Stanley as a generalization of the chromatic polynomial of a graph.

References

  1. William Rowan Hamilton (1856). "Memorandum respecting a new System of Roots of Unity" (PDF). Philosophical Magazine . 12: 446.
  2. Thomas L. Hankins (1980). Sir William Rowan Hamilton . Baltimore: The Johns Hopkins University Press. p.  474. ISBN   0-8018-6973-0.
  3. 1 2 Sowell, Katye O. (2001), "Hamilton's icosian calculus and his icosian game", Humanistic Mathematics Network Journal, 1 (24), Article 14, doi:10.5642/hmnj.200101.24.14, archived from the original on 11 March 2024, retrieved 25 April 2024
  4. 1 2 Norman L. Biggs; E. Keith Lloyd; Robin J. Wilson (1976). Graph theory 1736–1936. Oxford: Clarendon Press. p. 239. ISBN   0-19-853901-0.
  5. 1 2 Biggs, Norman (1995). "The Icosian Calculus of Today". Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences. 95A: 23–34. JSTOR   20490184.
  6. Jones, Gareth (1995). "Dessins d'enfants: bipartite maps and Galois groups". Séminaire Lotharingien de Combinatoire . B35d: 4.
  7. W. R. Hamilton, Letter to John T. Graves "On the Icosian" (17 October 1856), Mathematical papers, Vol. III, Algebra, eds. H. Halberstam and R. E. Ingram, Cambridge University Press, Cambridge, 1967, pp. 612–625.