Finiteness properties of groups

Last updated

In mathematics, finiteness properties of a group are a collection of properties that allow the use of various algebraic and topological tools, for example group cohomology, to study the group. It is mostly of interest for the study of infinite groups.

Contents

Special cases of groups with finiteness properties are finitely generated and finitely presented groups.

Topological finiteness properties

Given an integer n ≥ 1, a group is said to be of typeFn if there exists an aspherical CW-complex whose fundamental group is isomorphic to (a classifying space for ) and whose n-skeleton is finite. A group is said to be of type F if it is of type Fn for every n. It is of type F if there exists a finite aspherical CW-complex of which it is the fundamental group.

For small values of n these conditions have more classical interpretations:

It is known that for every n ≥ 1 there are groups of type Fn which are not of type Fn+1. Finite groups are of type F but not of type F. Thompson's group is an example of a torsion-free group which is of type F but not of type F. [1]

A reformulation of the Fn property is that a group has it if and only if it acts properly discontinuously, freely and cocompactly on a CW-complex whose homotopy groups vanish. Another finiteness property can be formulated by replacing homotopy with homology: a group is said to be of type FHn if it acts as above on a CW-complex whose n first homology groups vanish.

Algebraic finiteness properties

Let be a group and its group ring. The group is said to be of type FPn if there exists a resolution of the trivial -module such that the n first terms are finitely generated projective -modules. [2] The types FP and FP are defined in the obvious way.

The same statement with projective modules replaced by free modules defines the classes FLn for n ≥ 1, FL and FL.

It is also possible to define classes FPn(R) and FLn(R) for any commutative ring R, by replacing the group ring by in the definitions above.

Either of the conditions Fn or FHn imply FPn and FLn (over any commutative ring). A group is of type FP1 if and only if it is finitely generated, [2] but for any n ≥ 2 there exists groups which are of type FPn but not Fn. [3]

Group cohomology

If a group is of type FPn then its cohomology groups are finitely generated for . If it is of type FP then it is of finite cohomological dimension. Thus finiteness properties play an important role in the cohomology theory of groups.

Examples

Finite groups

A finite cyclic group acts freely on the unit sphere in , preserving a CW-complex structure with finitely many cells in each dimension. [4] Since this unit sphere is contractible, every finite cyclic group is of type F.

The standard resolution [5] for a group gives rise to a contractible CW-complex with a free -action in which the cells of dimension correspond to -tuples of elements of . This shows that every finite group is of type F.

A non-trivial finite group is never of type F because it has infinite cohomological dimension. This also implies that a group with a non-trivial torsion subgroup is never of type F.

Nilpotent groups

If is a torsion-free, finitely generated nilpotent group then it is of type F. [6]

Geometric conditions for finiteness properties

Negatively curved groups (hyperbolic or CAT(0) groups) are always of type F. [7] Such a group is of type F if and only if it is torsion-free.

As an example, cocompact S-arithmetic groups in algebraic groups over number fields are of type F. The BorelSerre compactification shows that this is also the case for non-cocompact arithmetic groups.

Arithmetic groups over function fields have very different finiteness properties: if is an arithmetic group in a simple algebraic group of rank over a global function field (such as ) then it is of type Fr but not of type Fr+1. [8]

Notes

  1. Brown, Kenneth; Geoghegan, Ross (1984). "An infinite-dimensional torsion-free FP group". Inventiones Mathematicae. 77 (2): 367–381. doi:10.1007/BF01388451. MR   0752825. S2CID   121877111.
  2. 1 2 Brown 1982, p. 197.
  3. Bestvina, Mladen; Brady, Noel (1997), "Morse theory and finiteness properties of groups", Inventiones Mathematicae , 129 (3): 445–470, Bibcode:1997InMat.129..445B, doi:10.1007/s002220050168, S2CID   120422255
  4. Brown 1982, p. 20.
  5. Brown 1982, p. 18.
  6. Brown 1982, p. 213.
  7. Bridson & Haefliger 1999, p. 439, 468.
  8. Bux, Kai-Uwe; Köhl, Ralf; Witzel, Stefan (2013). "Higher finiteness properties of reductive arithmetic groups in positive characteristic: The Rank Theorem". Annals of Mathematics. 177: 311–366. arXiv: 1102.0428 . doi:10.4007/annals.2013.177.1.6. S2CID   53991649.

Related Research Articles

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

A CW complex is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead to meet the needs of homotopy theory. This class of spaces is broader and has some better categorical properties than simplicial complexes, but still retains a combinatorial nature that allows for computation. The C stands for "closure-finite", and the W for "weak" topology.

In mathematics, a congruence subgroup of a matrix group with integer entries is a subgroup defined by congruence conditions on the entries. A very simple example would be invertible 2 × 2 integer matrices of determinant 1, in which the off-diagonal entries are even. More generally, the notion of congruence subgroup can be defined for arithmetic subgroups of algebraic groups; that is, those for which we have a notion of 'integral structure' and can define reduction maps modulo an integer.

In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations. The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic.

In geometric topology, a field within mathematics, the obstruction to a homotopy equivalence of finite CW-complexes being a simple homotopy equivalence is its Whitehead torsion which is an element in the Whitehead group. These concepts are named after the mathematician J. H. C. Whitehead.

In mathematics, specifically algebraic topology, an Eilenberg–MacLane space is a topological space with a single nontrivial homotopy group.

<span class="mw-page-title-main">Hyperbolic group</span> Mathematical concept

In group theory, more precisely in geometric group theory, a hyperbolic group, also known as a word hyperbolic group or Gromov hyperbolic group, is a finitely generated group equipped with a word metric satisfying certain properties abstracted from classical hyperbolic geometry. The notion of a hyperbolic group was introduced and developed by Mikhail Gromov (1987). The inspiration came from various existing mathematical theories: hyperbolic geometry but also low-dimensional topology, and combinatorial group theory. In a very influential chapter from 1987, Gromov proposed a wide-ranging research program. Ideas and foundational material in the theory of hyperbolic groups also stem from the work of George Mostow, William Thurston, James W. Cannon, Eliyahu Rips, and many others.

In algebraic geometry, local cohomology is an algebraic analogue of relative cohomology. Alexander Grothendieck introduced it in seminars in Harvard in 1961 written up by Hartshorne (1967), and in 1961-2 at IHES written up as SGA2 - Grothendieck (1968), republished as Grothendieck (2005). Given a function defined on an open subset of an algebraic variety, local cohomology measures the obstruction to extending that function to a larger domain. The rational function , for example, is defined only on the complement of on the affine line over a field , and cannot be extended to a function on the entire space. The local cohomology module detects this in the nonvanishing of a cohomology class . In a similar manner, is defined away from the and axes in the affine plane, but cannot be extended to either the complement of the -axis or the complement of the -axis alone ; this obstruction corresponds precisely to a nonzero class in the local cohomology module .

In mathematics, given an additive subgroup , the Novikov ring of is the subring of consisting of formal sums such that and . The notion was introduced by Sergei Novikov in the papers that initiated the generalization of Morse theory using a closed one-form instead of a function. The notion is used in quantum cohomology, among the others.

In abstract algebra, cohomological dimension is an invariant of a group which measures the homological complexity of its representations. It has important applications in geometric group theory, topology, and algebraic number theory.

In mathematics, specifically in operator K-theory, the Baum–Connes conjecture suggests a link between the K-theory of the reduced C*-algebra of a group and the K-homology of the classifying space of proper actions of that group. The conjecture sets up a correspondence between different areas of mathematics, with the K-homology of the classifying space being related to geometry, differential operator theory, and homotopy theory, while the K-theory of the group's reduced C*-algebra is a purely analytical object.

In mathematics, a group is called boundedly generated if it can be expressed as a finite product of cyclic subgroups. The property of bounded generation is also closely related with the congruence subgroup problem.

In mathematics, more precisely in group theory and hyperbolic geometry, Arithmetic Kleinian groups are a special class of Kleinian groups constructed using orders in quaternion algebras. They are particular instances of arithmetic groups. An arithmetic hyperbolic three-manifold is the quotient of hyperbolic space by an arithmetic Kleinian group.

<span class="mw-page-title-main">Lattice (discrete subgroup)</span> Discrete subgroup in a locally compact topological group

In Lie theory and related areas of mathematics, a lattice in a locally compact group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of Rn, this amounts to the usual geometric notion of a lattice as a periodic subset of points, and both the algebraic structure of lattices and the geometry of the space of all lattices are relatively well understood.

In mathematics, and more precisely in topology, the mapping class group of a surface, sometimes called the modular group or Teichmüller modular group, is the group of homeomorphisms of the surface viewed up to continuous deformation. It is of fundamental importance for the study of 3-manifolds via their embedded surfaces and is also studied in algebraic geometry in relation to moduli problems for curves.

In mathematics, particularly in homological algebra and algebraic topology, the Eilenberg–Ganea theorem states for every finitely generated group G with certain conditions on its cohomological dimension, one can construct an aspherical CW complex X of dimension n whose fundamental group is G. The theorem is named after Polish mathematician Samuel Eilenberg and Romanian mathematician Tudor Ganea. The theorem was first published in a short paper in 1957 in the Annals of Mathematics.

Local rigidity theorems in the theory of discrete subgroups of Lie groups are results which show that small deformations of certain such subgroups are always trivial. It is different from Mostow rigidity and weaker than superrigidity.

Arithmetic Fuchsian groups are a special class of Fuchsian groups constructed using orders in quaternion algebras. They are particular instances of arithmetic groups. The prototypical example of an arithmetic Fuchsian group is the modular group . They, and the hyperbolic surface associated to their action on the hyperbolic plane often exhibit particularly regular behaviour among Fuchsian groups and hyperbolic surfaces.

In metric geometry, asymptotic dimension of a metric space is a large-scale analog of Lebesgue covering dimension. The notion of asymptotic dimension was introduced by Mikhail Gromov in his 1993 monograph Asymptotic invariants of infinite groups in the context of geometric group theory, as a quasi-isometry invariant of finitely generated groups. As shown by Guoliang Yu, finitely generated groups of finite homotopy type with finite asymptotic dimension satisfy the Novikov conjecture. Asymptotic dimension has important applications in geometric analysis and index theory.

In the mathematical subject of group theory, a co-Hopfian group is a group that is not isomorphic to any of its proper subgroups. The notion is dual to that of a Hopfian group, named after Heinz Hopf.

References