Presentation complex

Last updated

In geometric group theory, a presentation complex is a 2-dimensional cell complex associated to any presentation of a group G. The complex has a single vertex, and one loop at the vertex for each generator of G. There is one 2-cell for each relation in the presentation, with the boundary of the 2-cell attached along the appropriate word.

Contents

Properties

Examples

Let be the two-dimensional integer lattice, with presentation

Then the presentation complex for G is a torus, obtained by gluing the opposite sides of a square, the 2-cell, which are labelled x and y. All four corners of the square are glued into a single vertex, the 0-cell of the presentation complex, while a pair consisting of a longtitudal and meridian circles on the torus, intersecting at the vertex, constitutes its 1-skeleton.

The associated Cayley complex is a regular tiling of the plane by unit squares. The 1-skeleton of this complex is a Cayley graph for .

Let be the Infinite dihedral group, with presentation . The presentation complex for is , the wedge sum of projective planes. For each path, there is one 2-cell glued to each loop, which provides the standard cell structure for each projective plane. The Cayley complex is an infinite string of spheres. [1]

Related Research Articles

In quantum mechanics, bra–ket notation, or Dirac notation, is ubiquitous. The notation uses the angle brackets, "" and "", and a vertical bar "", to construct "bras" and "kets". A ket looks like "". Mathematically it denotes a vector, , in an abstract (complex) vector space , and physically it represents a state of some quantum system. A bra looks like "", and mathematically it denotes a linear functional , i.e. a linear map that maps each vector in to a number in the complex plane . Letting the linear functional act on a vector is written as .

In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent have isomorphic fundamental groups.

Group theory branch of mathematics that studies the algebraic properties of groups

In mathematics and abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right.

In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, to other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry.

In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature Kp) depends on a two-dimensional linear subspace σp of the tangent space at a point p of the manifold. It can be defined geometrically as the Gaussian curvature of the surface which has the plane σp as a tangent plane at p, obtained from geodesics which start at p in the directions of σp. The sectional curvature is a real-valued function on the 2-Grassmannian bundle over the manifold.

In the mathematical disciplines of topology, geometry, and geometric group theory, an orbifold is a generalization of a manifold. It is a topological space with an orbifold structure.

In topology, a CW complex is a type of topological space introduced by J. H. C. Whitehead to meet the needs of homotopy theory. This class of spaces is broader and has some better categorical properties than simplicial complexes, but still retains a combinatorial nature that allows for computation.

Cayley graph graph whose vertices and edges represent the elements of a group and their products with the generators of the group

In mathematics, a Cayley graph, also known as a Cayley colour graph, Cayley diagram, group diagram, or colour group is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem and uses a specified, usually finite, set of generators for the group. It is a central tool in combinatorial and geometric group theory.

Poincaré half-plane model Upper-half plane model of hyperbolic non-Euclidean geometry

In non-Euclidean geometry, the Poincaré half-plane model is the upper half-plane, denoted below as H, together with a metric, the Poincaré metric, that makes it a model of two-dimensional hyperbolic geometry.

In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often by means of an involution operation: if the dual of A is B, then the dual of B is A. Such involutions sometimes have fixed points, so that the dual of A is A itself. For example, Desargues' theorem is self-dual in this sense under the standard duality in projective geometry.

Dehn twist

In geometric topology, a branch of mathematics, a Dehn twist is a certain type of self-homeomorphism of a surface.

In mathematics, a knot is an embedding of a circle into 3-dimensional Euclidean space. The knot group of a knot K is defined as the fundamental group of the knot complement of K in R3,

In mathematics, a spherical 3-manifoldM is a 3-manifold of the form

In mathematics, a hyperbolic metric space is a metric space satisfying certain metric relations between points. The definition, introduced by Mikhael Gromov, generalizes the metric properties of classical hyperbolic geometry and of trees. Hyperbolicity is a large-scale property, and is very useful to the study of certain infinite groups called (Gromov-)hyperbolic groups.

In group theory, a word metric on a discrete group is a way to measure distance between any two elements of . As the name suggests, the word metric is a metric on , assigning to any two elements , of a distance that measures how efficiently their difference can be expressed as a word whose letters come from a generating set for the group. The word metric on G is very closely related to the Cayley graph of G: the word metric measures the length of the shortest path in the Cayley graph between two elements of G.

In mathematics, an antiunitary transformation, is a bijective antilinear map

Möbius–Kantor graph

In the mathematical field of graph theory, the Möbius–Kantor graph is a symmetric bipartite cubic graph with 16 vertices and 24 edges named after August Ferdinand Möbius and Seligmann Kantor. It can be defined as the generalized Petersen graph G(8,3): that is, it is formed by the vertices of an octagon, connected to the vertices of an eight-point star in which each point of the star is connected to the points three steps away from it.

In mathematics, and particularly singularity theory, the Milnor number, named after John Milnor, is an invariant of a function germ.

In mathematics, a Δ-setS, often called a semi-simplicial set, is a combinatorial object that is useful in the construction and triangulation of topological spaces, and also in the computation of related algebraic invariants of such spaces. A Δ-set is somewhat more general than a simplicial complex, yet not quite as general as a simplicial set.

This is a glossary for the terminology in a mathematical field of functional analysis.

References

  1. Hatcher, Allen (2001-12-03). Algebraic Topology (1st ed.). Cambridge: Cambridge University Press. ISBN   9780521795401.