In mathematics, a building (also Tits building, named after Jacques Tits) is a combinatorial and geometric structure which simultaneously generalizes certain aspects of flag manifolds, finite projective planes, and Riemannian symmetric spaces. Buildings were initially introduced by Jacques Tits as a means to understand the structure of isotropic reductive linear algebraic groups over arbitrary fields. The more specialized theory of Bruhat–Tits buildings (named also after François Bruhat) plays a role in the study of p-adic Lie groups analogous to that of the theory of symmetric spaces in the theory of Lie groups.
The notion of a building was invented by Jacques Tits as a means of describing simple algebraic groups over an arbitrary field. Tits demonstrated how to every such group G one can associate a simplicial complex Δ = Δ(G) with an action of G, called the spherical building of G. The group G imposes very strong combinatorial regularity conditions on the complexes Δ that can arise in this fashion. By treating these conditions as axioms for a class of simplicial complexes, Tits arrived at his first definition of a building. A part of the data defining a building Δ is a Coxeter group W, which determines a highly symmetrical simplicial complex Σ = Σ(W,S), called the Coxeter complex. A building Δ is glued together from multiple copies of Σ, called its apartments, in a certain regular fashion. When W is a finite Coxeter group, the Coxeter complex is a topological sphere, and the corresponding buildings are said to be of spherical type. When W is an affine Weyl group, the Coxeter complex is a subdivision of the affine plane and one speaks of affine, or Euclidean, buildings. An affine building of type Ã1 is the same as an infinite tree without terminal vertices.
Although the theory of semisimple algebraic groups provided the initial motivation for the notion of a building, not all buildings arise from a group. In particular, projective planes and generalized quadrangles form two classes of graphs studied in incidence geometry which satisfy the axioms of a building, but may not be connected with any group. This phenomenon turns out to be related to the low rank of the corresponding Coxeter system (namely, two). Tits proved a remarkable theorem: all spherical buildings of rank at least three are connected with a group; moreover, if a building of rank at least two is connected with a group then the group is essentially determined by the building (Tits 1974).
Iwahori–Matsumoto, Borel–Tits and Bruhat–Tits demonstrated that in analogy with Tits' construction of spherical buildings, affine buildings can also be constructed from certain groups, namely, reductive algebraic groups over a local non-Archimedean field. Furthermore, if the split rank of the group is at least three, it is essentially determined by its building. Tits later reworked the foundational aspects of the theory of buildings using the notion of a chamber system, encoding the building solely in terms of adjacency properties of simplices of maximal dimension; this leads to simplifications in both spherical and affine cases. He proved that, in analogy with the spherical case, every building of affine type and rank at least four arises from a group.
An n-dimensional buildingX is an abstract simplicial complex which is a union of subcomplexes A called apartments such that
An n-simplex in A is called a chamber (originally chambre, i.e. room in French).
The rank of the building is defined to be n + 1.
Every apartment A in a building is a Coxeter complex. In fact, for every two n-simplices intersecting in an (n – 1)-simplex or panel, there is a unique period two simplicial automorphism of A, called a reflection, carrying one n-simplex onto the other and fixing their common points. These reflections generate a Coxeter group W, called the Weyl group of A, and the simplicial complex A corresponds to the standard geometric realization of W. Standard generators of the Coxeter group are given by the reflections in the walls of a fixed chamber in A. Since the apartment A is determined up to isomorphism by the building, the same is true of any two simplices in X lying in some common apartment A. When W is finite, the building is said to be spherical. When it is an affine Weyl group, the building is said to be affine or Euclidean.
The chamber system is the adjacency graph formed by the chambers; each pair of adjacent chambers can in addition be labelled by one of the standard generators of the Coxeter group (see Tits 1981).
Every building has a canonical length metric inherited from the geometric realisation obtained by identifying the vertices with an orthonormal basis of a Hilbert space. For affine buildings, this metric satisfies the CAT(0) comparison inequality of Alexandrov, known in this setting as the Bruhat–Tits non-positive curvature condition for geodesic triangles: the distance from a vertex to the midpoint of the opposite side is no greater than the distance in the corresponding Euclidean triangle with the same side-lengths (see Bruhat & Tits 1972).
If a group G acts simplicially on a building X, transitively on pairs (C,A) of chambers C and apartments A containing them, then the stabilisers of such a pair define a (B, N) pair or Tits system. In fact the pair of subgroups
satisfies the axioms of a (B, N) pair and the Weyl group can be identified with N / N ∩ B.
Conversely the building can be recovered from the (B, N) pair, so that every (B, N) pair canonically defines a building. In fact, using the terminology of (B, N) pairs and calling any conjugate of B a Borel subgroup and any group containing a Borel subgroup a parabolic subgroup,
The same building can often be described by different (B, N) pairs. Moreover, not every building comes from a (B, N) pair: this corresponds to the failure of classification results in low rank and dimension (see below).
The Solomon-Tits theorem is a result which states the homotopy type of a building of a group of Lie type is the same as that of a bouquet of spheres.
The simplicial structure of the affine and spherical buildings associated to SLn(Qp), as well as their interconnections, are easy to explain directly using only concepts from elementary algebra and geometry (see Garrett 1997). In this case there are three different buildings, two spherical and one affine. Each is a union of apartments, themselves simplicial complexes. For the affine building, an apartment is a simplicial complex tessellating Euclidean space En−1 by (n − 1)-dimensional simplices; while for a spherical building it is the finite simplicial complex formed by all (n − 1)! simplices with a given common vertex in the analogous tessellation in En−2.
Each building is a simplicial complex X which has to satisfy the following axioms:
Let F be a field and let X be the simplicial complex with vertices the non-trivial vector subspaces of V = Fn. Two subspaces U1 and U2 are connected if one of them is a subset of the other. The k-simplices of X are formed by sets of k + 1 mutually connected subspaces. Maximal connectivity is obtained by taking n − 1 proper non-trivial subspaces and the corresponding (n − 1)-simplex corresponds to a complete flag
Lower dimensional simplices correspond to partial flags with fewer intermediary subspaces Ui.
To define the apartments in X, it is convenient to define a frame in V as a basis (vi) determined up to scalar multiplication of each of its vectors vi; in other words a frame is a set of one-dimensional subspaces Li = F·vi such that any k of them generate a k-dimensional subspace. Now an ordered frame L1, ..., Ln defines a complete flag via
Since reorderings of the various Li also give a frame, it is straightforward to see that the subspaces, obtained as sums of the Li, form a simplicial complex of the type required for an apartment of a spherical building. The axioms for a building can easily be verified using the classical Schreier refinement argument used to prove the uniqueness of the Jordan–Hölder decomposition.
Let K be a field lying between Q and its p-adic completion Qp with respect to the usual non-Archimedean p-adic norm ‖x‖p on Q for some prime p. Let R be the subring of K defined by
When K = Q, R is the localization of Z at p and, when K = Qp, R = Zp, the p-adic integers, i.e. the closure of Z in Qp.
The vertices of the building X are the R-lattices in V = Kn, i.e. R-submodules of the form
where (vi) is a basis of V over K. Two lattices are said to be equivalent if one is a scalar multiple of the other by an element of the multiplicative group K* of K (in fact only integer powers of p need be used). Two lattices L1 and L2 are said to be adjacent if some lattice equivalent to L2 lies between L1 and its sublattice p·L1: this relation is symmetric. The k-simplices of X are equivalence classes of k + 1 mutually adjacent lattices, The (n − 1)-simplices correspond, after relabelling, to chains
where each successive quotient has order p. Apartments are defined by fixing a basis (vi) of V and taking all lattices with basis (paivi) where (ai) lies in Zn and is uniquely determined up to addition of the same integer to each entry.
By definition each apartment has the required form and their union is the whole of X. The second axiom follows by a variant of the Schreier refinement argument. The last axiom follows by a simple counting argument based on the orders of finite Abelian groups of the form
A standard compactness argument shows that X is in fact independent of the choice of K. In particular taking K = Q, it follows that X is countable. On the other hand, taking K = Qp, the definition shows that GLn(Qp) admits a natural simplicial action on the building.
The building comes equipped with a labelling of its vertices with values in Z / nZ. Indeed, fixing a reference lattice L, the label of M is given by
for k sufficiently large. The vertices of any (n – 1)-simplex in X has distinct labels, running through the whole of Z / nZ. Any simplicial automorphism φ of X defines a permutation π of Z / nZ such that label(φ(M)) = π(label(M)). In particular for g in GLn(Qp),
Thus g preserves labels if g lies in SLn(Qp).
Tits proved that any label-preserving automorphism of the affine building arises from an element of SLn(Qp). Since automorphisms of the building permute the labels, there is a natural homomorphism
The action of GLn(Qp) gives rise to an n-cycle τ. Other automorphisms of the building arise from outer automorphisms of SLn(Qp) associated with automorphisms of the Dynkin diagram. Taking the standard symmetric bilinear form with orthonormal basis vi, the map sending a lattice to its dual lattice gives an automorphism whose square is the identity, giving the permutation σ that sends each label to its negative modulo n. The image of the above homomorphism is generated by σ and τ and is isomorphic to the dihedral group Dn of order 2n; when n = 3, it gives the whole of S3.
If E is a finite Galois extension of Qp and the building is constructed from SLn(E) instead of SLn(Qp), the Galois group Gal(E / Qp) will also act by automorphisms on the building.
Spherical buildings arise in two quite different ways in connection with the affine building X for SLn(Qp):
When L is an archimedean local field then on the building for the group SL2(L) an additional structure can be imposed of a building with complex multiplication. These were first introduced by Martin L. Brown (Brown 2004). These buildings arise when a quadratic extension of L acts on the vector space L2. These building with complex multiplication can be extended to any global field. They describe the action of the Hecke operators on Heegner points on the classical modular curve X0(N) as well as on the Drinfeld modular curve XDrin
0(I). These buildings with complex multiplication are completely classified for the case of SL2(L) in Brown 2004
Tits proved that all irreducible spherical buildings (i.e. with finite Weyl group) of rank greater than 2 are associated to simple algebraic or classical groups.
A similar result holds for irreducible affine buildings of dimension greater than 2 (their buildings "at infinity" are spherical of rank greater than two). In lower rank or dimension, there is no such classification. Indeed, each incidence structure gives a spherical building of rank 2 (see Pott 1995); and Ballmann and Brin proved that every 2-dimensional simplicial complex in which the links of vertices are isomorphic to the flag complex of a finite projective plane has the structure of a building, not necessarily classical. Many 2-dimensional affine buildings have been constructed using hyperbolic reflection groups or other more exotic constructions connected with orbifolds.
Tits also proved that every time a building is described by a (B, N) pair in a group, then in almost all cases the automorphisms of the building correspond to automorphisms of the group (see Tits 1974).
The theory of buildings has important applications in several rather disparate fields. Besides the already mentioned connections with the structure of reductive algebraic groups over general and local fields, buildings are used to study their representations. The results of Tits on determination of a group by its building have deep connections with rigidity theorems of George Mostow and Grigory Margulis, and with Margulis arithmeticity.
Special types of buildings are studied in discrete mathematics, and the idea of a geometric approach to characterizing simple groups proved very fruitful in the classification of finite simple groups. The theory of buildings of type more general than spherical or affine is still relatively undeveloped, but these generalized buildings have already found applications to construction of Kac–Moody groups in algebra, and to nonpositively curved manifolds and hyperbolic groups in topology and geometric group theory.
In geometry, a simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. For example,
In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet at infinity. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines.
In mathematics, a simplicial complex is a set composed of points, line segments, triangles, and their n-dimensional counterparts. Simplicial complexes should not be confused with the more abstract notion of a simplicial set appearing in modern simplicial homotopy theory. The purely combinatorial counterpart to a simplicial complex is an abstract simplicial complex. To distinguish a simplicial complex from an abstract simplicial complex, the former is often called a geometric simplicial complex.
In the mathematical field of Lie theory, a Dynkin diagram, named for Eugene Dynkin, is a type of graph with some edges doubled or tripled. Dynkin diagrams arise in the classification of semisimple Lie algebras over algebraically closed fields, in the classification of Weyl groups and other finite reflection groups, and in other contexts. Various properties of the Dynkin diagram correspond to important features of the associated Lie algebra.
In the mathematical disciplines of topology and geometry, an orbifold is a generalization of a manifold. Roughly speaking, an orbifold is a topological space which is locally a finite group quotient of a Euclidean space.
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; for example, the symmetry group of each regular polyhedron is a finite Coxeter group. However, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced in 1934 as abstractions of reflection groups, and finite Coxeter groups were classified in 1935.
In mathematics, an algebraic torus, where a one dimensional torus is typically denoted by , , or , is a type of commutative affine algebraic group commonly found in projective algebraic geometry and toric geometry. Higher dimensional algebraic tori can be modelled as a product of algebraic groups . These groups were named by analogy with the theory of tori in Lie group theory. For example, over the complex numbers the algebraic torus is isomorphic to the group scheme , which is the scheme theoretic analogue of the Lie group . In fact, any -action on a complex vector space can be pulled back to a -action from the inclusion as real manifolds.
In mathematics, the Iwahori–Hecke algebra, or Hecke algebra, named for Erich Hecke and Nagayoshi Iwahori, is a deformation of the group algebra of a Coxeter group.
In mathematics, the barycentric subdivision is a standard way to subdivide a given simplex into smaller ones. Its extension on simplicial complexes is a canonical method to refine them. Therefore, the barycentric subdivision is an important tool in algebraic topology.
In combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely combinatorial description of the geometric notion of a simplicial complex. For example, in a 2-dimensional simplicial complex, the sets in the family are the triangles, their edges, and their vertices.
In mathematics, a simplicial set is an object composed of simplices in a specific way. Simplicial sets are higher-dimensional generalizations of directed graphs, partially ordered sets and categories. Formally, a simplicial set may be defined as a contravariant functor from the simplex category to the category of sets. Simplicial sets were introduced in 1950 by Samuel Eilenberg and Joseph A. Zilber.
In algebraic topology, simplicial homology is the sequence of homology groups of a simplicial complex. It formalizes the idea of the number of holes of a given dimension in the complex. This generalizes the number of connected components.
In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation that has a finite kernel and is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n). Simple algebraic groups and (more generally) semisimple algebraic groups are reductive.
In mathematics, triangulation describes the replacement of topological spaces by piecewise linear spaces, i.e. the choice of a homeomorphism in a suitable simplicial complex. Spaces being homeomorphic to a simplicial complex are called triangulable. Triangulation has various uses in different branches of mathematics, for instance in algebraic topology, in complex analysis or in modeling.
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary.
In geometry, a Schläfli orthoscheme is a type of simplex. The orthoscheme is the generalization of the right triangle to simplex figures of any number of dimensions. Orthoschemes are defined by a sequence of edges that are mutually orthogonal. They were introduced by Ludwig Schläfli, who called them orthoschemes and studied their volume in Euclidean, hyperbolic, and spherical geometries. H. S. M. Coxeter later named them after Schläfli. As right triangles provide the basis for trigonometry, orthoschemes form the basis of a trigonometry of n dimensions, as developed by Schoute who called it polygonometry. J.-P. Sydler and Børge Jessen studied orthoschemes extensively in connection with Hilbert's third problem.
In algebra, an Iwahori subgroup is a subgroup of a reductive algebraic group over a nonarchimedean local field that is analogous to a Borel subgroup of an algebraic group. A parahoric subgroup is a proper subgroup that is a finite union of double cosets of an Iwahori subgroup, so is analogous to a parabolic subgroup of an algebraic group. Iwahori subgroups are named after Nagayoshi Iwahori, and "parahoric" is a portmanteau of "parabolic" and "Iwahori". Iwahori & Matsumoto (1965) studied Iwahori subgroups for Chevalley groups over p-adic fields, and Bruhat & Tits (1972) extended their work to more general groups.
In mathematics, a shelling of a simplicial complex is a way of gluing it together from its maximal simplices in a well-behaved way. A complex admitting a shelling is called shellable.
In geometry, the simplicial honeycomb is a dimensional infinite series of honeycombs, based on the affine Coxeter group symmetry. It is represented by a Coxeter-Dynkin diagram as a cyclic graph of n + 1 nodes with one node ringed. It is composed of n-simplex facets, along with all rectified n-simplices. It can be thought of as an n-dimensional hypercubic honeycomb that has been subdivided along all hyperplanes , then stretched along its main diagonal until the simplices on the ends of the hypercubes become regular. The vertex figure of an n-simplex honeycomb is an expanded n-simplex.
In the mathematical theory of reflection groups, the parabolic subgroups are a special kind of subgroup. The precise definition of which subgroups are parabolic depends on context—for example, whether one is discussing general Coxeter groups or complex reflection groups—but in all cases the collection of parabolic subgroups exhibits important good behaviors. For example, the parabolic subgroups of a reflection group have a natural indexing set and form a lattice when ordered by inclusion. The different definitions of parabolic subgroups essentially coincide in the case of finite real reflection groups. Parabolic subgroups arise in the theory of algebraic groups, through their connection with Weyl groups.