Affine Hecke algebra

Last updated

In mathematics, an affine Hecke algebra is the algebra associated to an affine Weyl group, and can be used to prove Macdonald's constant term conjecture for Macdonald polynomials.

Contents

Definition

Let be a Euclidean space of a finite dimension and an affine root system on . An affine Hecke algebra is a certain associative algebra that deforms the group algebra of the Weyl group of (the affine Weyl group). It is usually denoted by , where is multiplicity function that plays the role of deformation parameter. For the affine Hecke algebra indeed reduces to .

Generalizations

Ivan Cherednik introduced generalizations of affine Hecke algebras, the so-called double affine Hecke algebra (usually referred to as DAHA). Using this he was able to give a proof of Macdonald's constant term conjecture for Macdonald polynomials (building on work of Eric Opdam). Another main inspiration for Cherednik to consider the double affine Hecke algebra was the quantum KZ equations.

Related Research Articles

<span class="mw-page-title-main">Spinor</span> Non-tensorial representation of the spin group; represents fermions in physics

In geometry and physics, spinors are elements of a complex number-based vector space that can be associated with Euclidean space. A spinor transforms linearly when the Euclidean space is subjected to a slight (infinitesimal) rotation, but unlike geometric vectors and tensors, a spinor transforms to its negative when the space rotates through 360°. It takes a rotation of 720° for a spinor to go back to its original state. This property characterizes spinors: spinors can be viewed as the "square roots" of vectors.

In abstract algebra, the Weyl algebra is the ring of differential operators with polynomial coefficients, namely expressions of the form

In mathematics, the Iwahori–Hecke algebra, or Hecke algebra, named for Erich Hecke and Nagayoshi Iwahori, is a deformation of the group algebra of a Coxeter group.

In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynomial in the variable with integer coefficients.

In mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. Given an affine Lie algebra, one can also form the associated affine Kac-Moody algebra, as described below. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite-dimensional semisimple Lie algebras, is much better understood than that of general Kac–Moody algebras. As observed by Victor Kac, the character formula for representations of affine Lie algebras implies certain combinatorial identities, the Macdonald identities.

In mathematics, the Hall algebra is an associative algebra with a basis corresponding to isomorphism classes of finite abelian p-groups. It was first discussed by Steinitz (1901) but forgotten until it was rediscovered by Philip Hall (1959), both of whom published no more than brief summaries of their work. The Hall polynomials are the structure constants of the Hall algebra. The Hall algebra plays an important role in the theory of Masaki Kashiwara and George Lusztig regarding canonical bases in quantum groups. Ringel (1990) generalized Hall algebras to more general categories, such as the category of representations of a quiver.

In the mathematical field of representation theory, a Kazhdan–Lusztig polynomial is a member of a family of integral polynomials introduced by David Kazhdan and George Lusztig (1979). They are indexed by pairs of elements y, w of a Coxeter group W, which can in particular be the Weyl group of a Lie group.

In mathematics, Macdonald polynomialsPλ(x; t,q) are a family of orthogonal symmetric polynomials in several variables, introduced by Macdonald in 1987. He later introduced a non-symmetric generalization in 1995. Macdonald originally associated his polynomials with weights λ of finite root systems and used just one variable t, but later realized that it is more natural to associate them with affine root systems rather than finite root systems, in which case the variable t can be replaced by several different variables t=(t1,...,tk), one for each of the k orbits of roots in the affine root system. The Macdonald polynomials are polynomials in n variables x=(x1,...,xn), where n is the rank of the affine root system. They generalize many other families of orthogonal polynomials, such as Jack polynomials and Hall–Littlewood polynomials and Askey–Wilson polynomials, which in turn include most of the named 1-variable orthogonal polynomials as special cases. Koornwinder polynomials are Macdonald polynomials of certain non-reduced root systems. They have deep relationships with affine Hecke algebras and Hilbert schemes, which were used to prove several conjectures made by Macdonald about them.

In mathematics, Deligne–Lusztig theory is a way of constructing linear representations of finite groups of Lie type using ℓ-adic cohomology with compact support, introduced by Pierre Deligne and George Lusztig (1976).

In mathematics, the Littelmann path model is a combinatorial device due to Peter Littelmann for computing multiplicities without overcounting in the representation theory of symmetrisable Kac–Moody algebras. Its most important application is to complex semisimple Lie algebras or equivalently compact semisimple Lie groups, the case described in this article. Multiplicities in irreducible representations, tensor products and branching rules can be calculated using a coloured directed graph, with labels given by the simple roots of the Lie algebra.

In representation theory, a Yangian is an infinite-dimensional Hopf algebra, a type of a quantum group. Yangians first appeared in physics in the work of Ludvig Faddeev and his school in the late 1970s and early 1980s concerning the quantum inverse scattering method. The name Yangian was introduced by Vladimir Drinfeld in 1985 in honor of C.N. Yang.

In mathematics, Macdonald-Koornwinder polynomials (also called Koornwinder polynomials) are a family of orthogonal polynomials in several variables, introduced by Koornwinder and I. G. Macdonald, that generalize the Askey–Wilson polynomials. They are the Macdonald polynomials attached to the non-reduced affine root system of type (C
n
, Cn), and in particular satisfy analogues of Macdonald's conjectures. In addition Jan Felipe van Diejen showed that the Macdonald polynomials associated to any classical root system can be expressed as limits or special cases of Macdonald-Koornwinder polynomials and found complete sets of concrete commuting difference operators diagonalized by them. Furthermore, there is a large class of interesting families of multivariable orthogonal polynomials associated with classical root systems which are degenerate cases of the Macdonald-Koornwinder polynomials. The Macdonald-Koornwinder polynomials have also been studied with the aid of affine Hecke algebras.

<span class="mw-page-title-main">Dyson conjecture</span> Theorem about the constant term of certain Laurent polynomials

In mathematics, the Dyson conjecture is a conjecture about the constant term of certain Laurent polynomials, proved independently in 1962 by Wilson and Gunson. Andrews generalized it to the q-Dyson conjecture, proved by Zeilberger and Bressoud and sometimes called the Zeilberger–Bressoud theorem. Macdonald generalized it further to more general root systems with the Macdonald constant term conjecture, proved by Cherednik.

In mathematics, Schur algebras, named after Issai Schur, are certain finite-dimensional algebras closely associated with Schur–Weyl duality between general linear and symmetric groups. They are used to relate the representation theories of those two groups. Their use was promoted by the influential monograph of J. A. Green first published in 1980. The name "Schur algebra" is due to Green. In the modular case Schur algebras were used by Gordon James and Karin Erdmann to show that the problems of computing decomposition numbers for general linear groups and symmetric groups are actually equivalent. Schur algebras were used by Friedlander and Suslin to prove finite generation of cohomology of finite group schemes.

In mathematics, a double affine Hecke algebra, or Cherednik algebra, is an algebra containing the Hecke algebra of an affine Weyl group, given as the quotient of the group ring of a double affine braid group. They were introduced by Cherednik, who used them to prove Macdonald's constant term conjecture for Macdonald polynomials. Infinitesimal Cherednik algebras have significant implications in representation theory, and therefore have important applications in particle physics and in chemistry.

In mathematics, a double affine braid group is a group containing the braid group of an affine Weyl group. Their group rings have quotients called double affine Hecke algebras in the same way that the group rings of affine braid groups have quotients that are affine Hecke algebras.

In mathematics, a Hecke algebra of a locally compact group is an algebra of bi-invariant measures under convolution.

<span class="mw-page-title-main">Affine root system</span>

In mathematics, an affine root system is a root system of affine-linear functions on a Euclidean space. They are used in the classification of affine Lie algebras and superalgebras, and semisimple p-adic algebraic groups, and correspond to families of Macdonald polynomials. The reduced affine root systems were used by Kac and Moody in their work on Kac–Moody algebras. Possibly non-reduced affine root systems were introduced and classified by Macdonald (1972) and Bruhat & Tits (1972).

Ivan Cherednik is a Russian-American mathematician. He introduced double affine Hecke algebras, and used them to prove Macdonald's constant term conjecture in. He has also dealt with algebraic geometry, number theory and Soliton equations. His research interests include representation theory, mathematical physics, and algebraic combinatorics. He is currently the Austin M. Carr Distinguished Professor of mathematics at the University of North Carolina at Chapel Hill.

<span class="mw-page-title-main">Affine symmetric group</span> Mathematical structure

The affine symmetric groups are a family of mathematical structures that describe the symmetries of the number line and the regular triangular tiling of the plane, as well as related higher-dimensional objects. In addition to this geometric description, the affine symmetric groups may be defined in other ways: as collections of permutations (rearrangements) of the integers that are periodic in a certain sense, or in purely algebraic terms as a group with certain generators and relations. They are studied in combinatorics and representation theory.

References