Double affine Hecke algebra

Last updated

In mathematics, a double affine Hecke algebra, or Cherednik algebra, is an algebra containing the Hecke algebra of an affine Weyl group, given as the quotient of the group ring of a double affine braid group. They were introduced by Cherednik, who used them to prove Macdonald's constant term conjecture for Macdonald polynomials. Infinitesimal Cherednik algebras have significant implications in representation theory, and therefore have important applications in particle physics and chemistry.

Related Research Articles

In mathematics, a global field is one of two types of fields that are characterized using valuations. There are two kinds of global fields:

Daniel Gray Quillen was an American mathematician. He is known for being the "prime architect" of higher algebraic K-theory, for which he was awarded the Cole Prize in 1975 and the Fields Medal in 1978.

In mathematics, the Iwahori–Hecke algebra, or Hecke algebra, named for Erich Hecke and Nagayoshi Iwahori, is a deformation of the group algebra of a Coxeter group.

<span class="mw-page-title-main">J. W. S. Cassels</span> British mathematician

John William Scott "Ian" Cassels, FRS was a British mathematician.

<span class="mw-page-title-main">Ian G. Macdonald</span> British mathematician (1928–2023)

Ian Grant Macdonald was a British mathematician known for his contributions to symmetric functions, special functions, Lie algebra theory and other aspects of algebra, algebraic combinatorics, and combinatorics.

<span class="mw-page-title-main">Bertram Kostant</span> American Jewish mathematician

Bertram Kostant was an American mathematician who worked in representation theory, differential geometry, and mathematical physics.

In mathematics, a Drinfeld module is roughly a special kind of module over a ring of functions on a curve over a finite field, generalizing the Carlitz module. Loosely speaking, they provide a function field analogue of complex multiplication theory. A shtuka is a sort of generalization of a Drinfeld module, consisting roughly of a vector bundle over a curve, together with some extra structure identifying a "Frobenius twist" of the bundle with a "modification" of it.

John Willard Morgan is an American mathematician known for his contributions to topology and geometry. He is a Professor Emeritus at Columbia University and a member of the Simons Center for Geometry and Physics at Stony Brook University.

In mathematics, Macdonald polynomialsPλ(x; t,q) are a family of orthogonal symmetric polynomials in several variables, introduced by Macdonald in 1987. He later introduced a non-symmetric generalization in 1995. Macdonald originally associated his polynomials with weights λ of finite root systems and used just one variable t, but later realized that it is more natural to associate them with affine root systems rather than finite root systems, in which case the variable t can be replaced by several different variables t=(t1,...,tk), one for each of the k orbits of roots in the affine root system. The Macdonald polynomials are polynomials in n variables x=(x1,...,xn), where n is the rank of the affine root system. They generalize many other families of orthogonal polynomials, such as Jack polynomials and Hall–Littlewood polynomials and Askey–Wilson polynomials, which in turn include most of the named 1-variable orthogonal polynomials as special cases. Koornwinder polynomials are Macdonald polynomials of certain non-reduced root systems. They have deep relationships with affine Hecke algebras and Hilbert schemes, which were used to prove several conjectures made by Macdonald about them.

In mathematics, an affine Hecke algebra is the algebra associated to an affine Weyl group, and can be used to prove Macdonald's constant term conjecture for Macdonald polynomials.

Arithmetic dynamics is a field that amalgamates two areas of mathematics, dynamical systems and number theory. Part of the inspiration comes from complex dynamics, the study of the iteration of self-maps of the complex plane or other complex algebraic varieties. Arithmetic dynamics is the study of the number-theoretic properties of integer, rational, p-adic, or algebraic points under repeated application of a polynomial or rational function. A fundamental goal is to describe arithmetic properties in terms of underlying geometric structures.

In mathematics, arithmetic combinatorics is a field in the intersection of number theory, combinatorics, ergodic theory and harmonic analysis.

In mathematics, Macdonald-Koornwinder polynomials (also called Koornwinder polynomials) are a family of orthogonal polynomials in several variables, introduced by Koornwinder and I. G. Macdonald, that generalize the Askey–Wilson polynomials. They are the Macdonald polynomials attached to the non-reduced affine root system of type (C
n
, Cn), and in particular satisfy analogues of Macdonald's conjectures. In addition Jan Felipe van Diejen showed that the Macdonald polynomials associated to any classical root system can be expressed as limits or special cases of Macdonald-Koornwinder polynomials and found complete sets of concrete commuting difference operators diagonalized by them. Furthermore, there is a large class of interesting families of multivariable orthogonal polynomials associated with classical root systems which are degenerate cases of the Macdonald-Koornwinder polynomials. The Macdonald-Koornwinder polynomials have also been studied with the aid of affine Hecke algebras.

<span class="mw-page-title-main">Dyson conjecture</span> Theorem about the constant term of certain Laurent polynomials

In mathematics, the Dyson conjecture is a conjecture about the constant term of certain Laurent polynomials, proved independently in 1962 by Wilson and Gunson. Andrews generalized it to the q-Dyson conjecture, proved by Zeilberger and Bressoud and sometimes called the Zeilberger–Bressoud theorem. Macdonald generalized it further to more general root systems with the Macdonald constant term conjecture, proved by Cherednik.

János Kollár is a Hungarian mathematician, specializing in algebraic geometry.

In mathematics, Kostka polynomials, named after the mathematician Carl Kostka, are families of polynomials that generalize the Kostka numbers. They are studied primarily in algebraic combinatorics and representation theory.

In mathematics, a double affine braid group is a group containing the braid group of an affine Weyl group. Their group rings have quotients called double affine Hecke algebras in the same way that the group rings of affine braid groups have quotients that are affine Hecke algebras.

In mathematics, an affine braid group is a braid group associated to an affine Coxeter system. Their group rings have quotients called affine Hecke algebras. They are subgroups of double affine braid groups.

In mathematics, the Rogers polynomials, also called Rogers–Askey–Ismail polynomials and continuous q-ultraspherical polynomials, are a family of orthogonal polynomials introduced by Rogers in the course of his work on the Rogers–Ramanujan identities. They are q-analogs of ultraspherical polynomials, and are the Macdonald polynomials for the special case of the A1 affine root system.

Ivan Cherednik is a Russian-American mathematician. He introduced double affine Hecke algebras, and used them to prove Macdonald's constant term conjecture in. He has also dealt with algebraic geometry, number theory and Soliton equations. His research interests include representation theory, mathematical physics, and algebraic combinatorics. He is currently the Austin M. Carr Distinguished Professor of mathematics at the University of North Carolina at Chapel Hill.

References