Algebraic structure → Group theory Group theory |
---|
In the area of modern algebra known as group theory, the Janko groupJ1 is a sporadic simple group of order
J1 is one of the 26 sporadic groups and was originally described by Zvonimir Janko in 1965. It is the only Janko group whose existence was proved by Janko himself and was the first sporadic group to be found since the discovery of the Mathieu groups in the 19th century. Its discovery launched the modern theory of sporadic groups.
In 1986 Robert A. Wilson showed that J1 cannot be a subgroup of the monster group. [1] Thus it is one of the 6 sporadic groups called the pariahs.
The smallest faithful complex representation of J1 has dimension 56. [2] J1 can be characterized abstractly as the unique simple group with abelian 2-Sylow subgroups and with an involution whose centralizer is isomorphic to the direct product of the group of order two and the alternating group A5 of order 60, which is to say, the rotational icosahedral group. That was Janko's original conception of the group. In fact Janko and Thompson were investigating groups similar to the Ree groups 2G2(32n+1), and showed that if a simple group G has abelian Sylow 2-subgroups and a centralizer of an involution of the form Z/2Z×PSL2(q) for q a prime power at least 3, then either q is a power of 3 and G has the same order as a Ree group (it was later shown that G must be a Ree group in this case) or q is 4 or 5. Note that PSL2(4)=PSL2(5)=A5. This last exceptional case led to the Janko group J1.
J1 has no outer automorphisms and its Schur multiplier is trivial.
J1 is contained in the O'Nan group as the subgroup of elements fixed by an outer automorphism of order 2.
J1 is the unique finite group G with the property that for C any nontrivial conjugacy class, every element of G is equal to xy for some x, y in C. [3]
Janko found a modular representation in terms of 7 × 7 orthogonal matrices in the field of eleven elements, with generators given by
and
Y has order 7 and Z has order 5. Janko (1966) credited W. A. Coppel for recognizing this representation as an embedding into Dickson's simple group G2(11) (which has a 7-dimensional representation over the field with 11 elements).
J1 is the automorphism group of the Livingstone graph, a distance-transitive graph with 266 vertices and 1463 edges. The stabilizer of a vertex is PSL2(11), and the stabilizer of an edge is 2×A5.
This permutation representation can be constructed implicitly by starting with the subgroup PSL2(11) and adjoining 11 involutions t0,...,tX. PSL2(11) permutes these involutions under the exceptional 11-point representation, so they may be identified with points in the Payley biplane. The following relations (combined) are sufficient to define J1: [4]
There is also a pair of generators a, b such that
J1 is thus a Hurwitz group, a finite homomorphic image of the (2,3,7) triangle group.
Janko (1966) found the 7 conjugacy classes of maximal subgroups of J1 shown in the table. Maximal simple subgroups of order 660 afford J1 a permutation representation of degree 266. He found that there are 2 conjugacy classes of subgroups isomorphic to the alternating group A5, both found in the simple subgroups of order 660. J1 has non-abelian simple proper subgroups of only 2 isomorphism types.
Structure | Order | Index | Description |
---|---|---|---|
PSL2(11) | 660 | 266 | Fixes point in smallest permutation representation |
23.7.3 | 168 | 1045 | Normalizer of Sylow 2-subgroup |
2×A5 | 120 | 1463 | Centralizer of involution |
19.6 | 114 | 1540 | Normalizer of Sylow 19-subgroup |
11.10 | 110 | 1596 | Normalizer of Sylow 11-subgroup |
D6×D10 | 60 | 2926 | Normalizer of Sylow 3-subgroup and Sylow 5-subgroup |
7.6 | 42 | 4180 | Normalizer of Sylow 7-subgroup |
The notation A.B means a group with a normal subgroup A with quotient B, and D2n is the dihedral group of order 2n.
The greatest order of any element of the group is 19. The conjugacy class orders and sizes are found in the ATLAS.
Order | No. elements | Conjugacy |
---|---|---|
1 = 1 | 1 = 1 | 1 class |
2 = 2 | 1463 = 7 · 11 · 19 | 1 class |
3 = 3 | 5852 = 22 · 7 · 11 · 19 | 1 class |
5 = 5 | 11704 = 23 · 7 · 11 · 19 | 2 classes, power equivalent |
6 = 2 · 3 | 29260 = 22 · 5 · 7 · 11 · 19 | 1 class |
7 = 7 | 25080 = 23 · 3 · 5 · 11 · 19 | 1 class |
10 = 2 · 5 | 35112 = 23 · 3 · 7 · 11 · 19 | 2 classes, power equivalent |
11 = 11 | 15960 = 23 · 3 · 5 · 7 · 19 | 1 class |
15 = 3 · 5 | 23408 = 24 · 7 · 11 · 19 | 2 classes, power equivalent |
19 = 19 | 27720 = 23 · 32 · 5 · 7 · 11 | 3 classes, power equivalent |
In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group defined over a finite set of symbols consists of the permutations that can be performed on the symbols. Since there are such permutation operations, the order of the symmetric group is .
In the area of abstract algebra known as group theory, the monster group M (also known as the Fischer–Griess monster, or the friendly giant) is the largest sporadic simple group, having order
In mathematics, an alternating group is the group of even permutations of a finite set. The alternating group on a set of n elements is called the alternating group of degree n, or the alternating group on n letters and denoted by An or Alt(n).
In the mathematical classification of finite simple groups, there are a number of groups which do not fit into any infinite family. These are called the sporadic simple groups, or the sporadic finite groups, or just the sporadic groups.
In the area of modern algebra known as group theory, the Conway groups are the three sporadic simple groups Co1, Co2 and Co3 along with the related finite group Co0 introduced by (Conway 1968, 1969).
In mathematics, the projective special linear group PSL(2, 7), isomorphic to GL(3, 2), is a finite simple group that has important applications in algebra, geometry, and number theory. It is the automorphism group of the Klein quartic as well as the symmetry group of the Fano plane. With 168 elements, PSL(2, 7) is the smallest nonabelian simple group after the alternating group A5 with 60 elements, isomorphic to PSL(2, 5).
In the area of modern algebra known as group theory, the Higman–Sims group HS is a sporadic simple group of order
In the area of modern algebra known as group theory, the Lyons groupLy or Lyons-Sims groupLyS is a sporadic simple group of order
In the area of modern algebra known as group theory, the Rudvalis groupRu is a sporadic simple group of order
In mathematics, a Ree group is a group of Lie type over a finite field constructed by Ree from an exceptional automorphism of a Dynkin diagram that reverses the direction of the multiple bonds, generalizing the Suzuki groups found by Suzuki using a different method. They were the last of the infinite families of finite simple groups to be discovered.
In the area of modern algebra known as group theory, the Janko groupJ3 or the Higman-Janko-McKay groupHJM is a sporadic simple group of order
In the area of modern algebra known as group theory, the Janko groupJ4 is a sporadic simple group of order
In the area of modern algebra known as group theory, the Janko groupJ2 or the Hall-Janko groupHJ is a sporadic simple group of order
In group theory, a branch of mathematics, the automorphisms and outer automorphisms of the symmetric groups and alternating groups are both standard examples of these automorphisms, and objects of study in their own right, particularly the exceptional outer automorphism of S6, the symmetric group on 6 elements.
In the area of modern algebra known as group theory, the McLaughlin group McL is a sporadic simple group of order
In mathematical group theory, a C-group is a group such that the centralizer of any involution has a normal Sylow 2-subgroup. They include as special cases CIT-groups where the centralizer of any involution is a 2-group, and TI-groups where any Sylow 2-subgroups have trivial intersection.
In mathematics, the Walter theorem, proved by John H. Walter, describes the finite groups whose Sylow 2-subgroup is abelian. Bender (1970) used Bender's method to give a simpler proof.
In the area of modern algebra known as group theory, the Conway groupCo2 is a sporadic simple group of order
In the area of modern algebra known as group theory, the Conway groupCo1 is a sporadic simple group of order