Janko group J1

Last updated

In the area of modern algebra known as group theory, the Janko groupJ1 is a sporadic simple group of order

Contents

   23 ·3 ·5 ·7 ·11 ·19 = 175560
≈ 2×105.

History

J1 is one of the 26 sporadic groups and was originally described by Zvonimir Janko in 1965. It is the only Janko group whose existence was proved by Janko himself and was the first sporadic group to be found since the discovery of the Mathieu groups in the 19th century. Its discovery launched the modern theory of sporadic groups.

In 1986 Robert A. Wilson showed that J1 cannot be a subgroup of the monster group. [1] Thus it is one of the 6 sporadic groups called the pariahs.

Properties

The smallest faithful complex representation of J1 has dimension 56. [2] J1 can be characterized abstractly as the unique simple group with abelian 2-Sylow subgroups and with an involution whose centralizer is isomorphic to the direct product of the group of order two and the alternating group A5 of order 60, which is to say, the rotational icosahedral group. That was Janko's original conception of the group. In fact Janko and Thompson were investigating groups similar to the Ree groups 2G2(32n+1), and showed that if a simple group G has abelian Sylow 2-subgroups and a centralizer of an involution of the form Z/2Z×PSL2(q) for q a prime power at least 3, then either q is a power of 3 and G has the same order as a Ree group (it was later shown that G must be a Ree group in this case) or q is 4 or 5. Note that PSL2(4)=PSL2(5)=A5. This last exceptional case led to the Janko group J1.

J1 is the automorphism group of the Livingstone graph, a distance-transitive graph with 266 vertices and 1463 edges.

J1 has no outer automorphisms and its Schur multiplier is trivial.

J1 is contained in the O'Nan group as the subgroup of elements fixed by an outer automorphism of order 2.

Construction

Janko found a modular representation in terms of 7 × 7 orthogonal matrices in the field of eleven elements, with generators given by

and

Y has order 7 and Z has order 5. Janko (1966) credited W. A. Coppel for recognizing this representation as an embedding into Dickson's simple group G2(11) (which has a 7-dimensional representation over the field with 11 elements).

There is also a pair of generators a, b such that

a2=b3=(ab)7=(abab−1)10=1

J1 is thus a Hurwitz group, a finite homomorphic image of the (2,3,7) triangle group.

Maximal subgroups

Janko (1966) found the 7 conjugacy classes of maximal subgroups of J1 shown in the table. Maximal simple subgroups of order 660 afford J1 a permutation representation of degree 266. He found that there are 2 conjugacy classes of subgroups isomorphic to the alternating group A5, both found in the simple subgroups of order 660. J1 has non-abelian simple proper subgroups of only 2 isomorphism types.

StructureOrderIndexDescription
PSL2(11)660266Fixes point in smallest permutation representation
23.7.31681045Normalizer of Sylow 2-subgroup
2×A51201463Centralizer of involution
19.61141540Normalizer of Sylow 19-subgroup
11.101101596Normalizer of Sylow 11-subgroup
D6×D10602926Normalizer of Sylow 3-subgroup and Sylow 5-subgroup
7.6424180Normalizer of Sylow 7-subgroup

The notation A.B means a group with a normal subgroup A with quotient B, and D2n is the dihedral group of order 2n.

Number of elements of each order

The greatest order of any element of the group is 19. The conjugacy class orders and sizes are found in the ATLAS.

OrderNo. elementsConjugacy
1 = 11 = 11 class
2 = 21463 = 7 · 11 · 191 class
3 = 35852 = 22 · 7 · 11 · 191 class
5 = 511704 = 23 · 7 · 11 · 192 classes, power equivalent
6 = 2 · 329260 = 22 · 5 · 7 · 11 · 191 class
7 = 725080 = 23 · 3 · 5 · 11 · 191 class
10 = 2 · 535112 = 23 · 3 · 7 · 11 · 192 classes, power equivalent
11 = 1115960 = 23 · 3 · 5 · 7 · 191 class
15 = 3 · 523408 = 24 · 7 · 11 · 192 classes, power equivalent
19 = 1927720 = 23 · 32 · 5 · 7 · 113 classes, power equivalent

Related Research Articles

<span class="mw-page-title-main">Symmetric group</span> Type of group in abstract algebra

In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group defined over a finite set of symbols consists of the permutations that can be performed on the symbols. Since there are such permutation operations, the order of the symmetric group is .

<span class="mw-page-title-main">Monster group</span> Finite simple group

In the area of abstract algebra known as group theory, the monster group M (also known as the Fischer–Griess monster, or the friendly giant) is the largest sporadic simple group, having order
   246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71
   = 808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000
   ≈ 8×1053.

<span class="mw-page-title-main">Simple group</span> Group without normal subgroups other than the trivial group and itself

In mathematics, a simple group is a nontrivial group whose only normal subgroups are the trivial group and the group itself. A group that is not simple can be broken into two smaller groups, namely a nontrivial normal subgroup and the corresponding quotient group. This process can be repeated, and for finite groups one eventually arrives at uniquely determined simple groups, by the Jordan–Hölder theorem.

<span class="mw-page-title-main">Conway group</span>

In the area of modern algebra known as group theory, the Conway groups are the three sporadic simple groups Co1, Co2 and Co3 along with the related finite group Co0 introduced by (Conway 1968, 1969).

In mathematics, the projective special linear group PSL(2, 7), isomorphic to GL(3, 2), is a finite simple group that has important applications in algebra, geometry, and number theory. It is the automorphism group of the Klein quartic as well as the symmetry group of the Fano plane. With 168 elements, PSL(2, 7) is the smallest nonabelian simple group after the alternating group A5 with 60 elements, isomorphic to PSL(2, 5).

<span class="mw-page-title-main">Lyons group</span>

In the area of modern algebra known as group theory, the Lyons groupLy or Lyons-Sims groupLyS is a sporadic simple group of order

<span class="mw-page-title-main">O'Nan group</span>

In the area of abstract algebra known as group theory, the O'Nan groupO'N or O'Nan–Sims group is a sporadic simple group of order

<span class="mw-page-title-main">Group of Lie type</span>

In mathematics, specifically in group theory, the phrase group of Lie type usually refers to finite groups that are closely related to the group of rational points of a reductive linear algebraic group with values in a finite field. The phrase group of Lie type does not have a widely accepted precise definition, but the important collection of finite simple groups of Lie type does have a precise definition, and they make up most of the groups in the classification of finite simple groups.

In mathematics, a Ree group is a group of Lie type over a finite field constructed by Ree from an exceptional automorphism of a Dynkin diagram that reverses the direction of the multiple bonds, generalizing the Suzuki groups found by Suzuki using a different method. They were the last of the infinite families of finite simple groups to be discovered.

Janko group J<sub>3</sub> Sporadic group

In the area of modern algebra known as group theory, the Janko groupJ3 or the Higman-Janko-McKay groupHJM is a sporadic simple group of order

Janko group J<sub>4</sub>

In the area of modern algebra known as group theory, the Janko groupJ4 is a sporadic simple group of order

Janko group J<sub>2</sub> In mathematics, one of the sporadic simple groups

In the area of modern algebra known as group theory, the Janko groupJ2 or the Hall-Janko groupHJ is a sporadic simple group of order

In group theory, a branch of mathematics, the automorphisms and outer automorphisms of the symmetric groups and alternating groups are both standard examples of these automorphisms, and objects of study in their own right, particularly the exceptional outer automorphism of S6, the symmetric group on 6 elements.

Mathieu group M<sub>22</sub>

In the area of modern algebra known as group theory, the Mathieu groupM22 is a sporadic simple group of order

<span class="mw-page-title-main">McLaughlin sporadic group</span>

In the area of modern algebra known as group theory, the McLaughlin group McL is a sporadic simple group of order

Conway group Co<sub>2</sub>

In the area of modern algebra known as group theory, the Conway groupCo2 is a sporadic simple group of order

Conway group Co<sub>3</sub>

In the area of modern algebra known as group theory, the Conway group is a sporadic simple group of order

Conway group Co<sub>1</sub>

In the area of modern algebra known as group theory, the Conway groupCo1 is a sporadic simple group of order

References

  1. Wilson (1986). "Is J1 a subgroup of the Monster?". Bulletin of the London Mathematical Society. 18 (4): 349–350. doi: 10.1112/blms/18.4.349 .
  2. Jansen (2005), p.123