Functor represented by a scheme

Last updated • 4 min readFrom Wikipedia, The Free Encyclopedia

In algebraic geometry, a functor represented by a schemeX is a set-valued contravariant functor on the category of schemes such that the value of the functor at each scheme S is (up to natural bijections or one-to-one correspondence) the set of all morphisms . The functor F is then said to be naturally equivalent to the functor of points of X; and the scheme X is said to represent the functor F, and to classify geometric objects over S given by F. [1]

Contents

A functor producing certain geometric objects over S might be represented by a scheme X. For example, the functor taking S to the set of all line bundles over S (or more precisely n-dimensional linear systems) is represented by the projective space . Another example is the Hilbert scheme X of a scheme Y, which represents the functor sending a scheme S to the set of closed subschemes of which are flat families over S. [2]

In some applications, it may not be possible to find a scheme that represents a given functor. This led to the notion of a stack, which is not quite a functor but can still be treated as if it were a geometric space. (A Hilbert scheme is a scheme rather than a stack, because, very roughly speaking, deformation theory is simpler for closed schemes.)

Some moduli problems are solved by giving formal solutions (as opposed to polynomial algebraic solutions) and in that case, the resulting functor is represented by a formal scheme. Such a formal scheme is then said to be algebraizable if there is a scheme that can represent the same functor, up to some isomorphisms.

Motivation

The notion is an analog of a classifying space in algebraic topology, where each principal G-bundle over a space S is (up to natural isomorphisms) the pullback of the universal bundle along some map . To give a principal G-bundle over S is the same as to give a map (called a classifying map) from S to the classifying space .

A similar phenomenon in algebraic geometry is given by a linear system: to give a morphism from a base variety S to a projective space is equivalent to giving a basepoint-free linear system (or equivalently a line bundle) on S. That is, the projective space X represents the functor which gives all line bundles over S.

Yoneda's lemma says that a scheme X determines and is determined by its functor of points. [3]

Functor of points

Let X be a scheme. Its functor of points is the functor

Hom(−,X) : (Affine schemes)op ⟶ Sets

sending an affine scheme Y to the set of scheme maps . [4]

A scheme is determined up to isomorphism by its functor of points. This is a stronger version of the Yoneda lemma, which says that a X is determined by the map Hom(−,X) : Schemesop  Sets.

Conversely, a functor F : (Affine schemes)op  Sets is the functor of points of some scheme if and only if F is a sheaf with respect to the Zariski topology on (Affine schemes), and F admits an open cover by affine schemes. [5]

Examples

Points as characters

Let X be a scheme over the base ring B. If x is a set-theoretic point of X, then the residue field is the residue field of the local ring (i.e., the quotient by the maximal ideal). For example, if X is an affine scheme Spec(A) and x is a prime ideal , then the residue field of x is the function field of the closed subscheme .

For simplicity, suppose . Then the inclusion of a set-theoretic point x into X corresponds to the ring homomorphism:

(which is if .)

The above should be compared to the spectrum of a commutative Banach algebra.

Points as sections

By the universal property of fiber product, each R-point of a scheme X determines a morphism of R-schemes

;

i.e., a section of the projection . If S is a subset of X(R), then one writes for the set of the images of the sections determined by elements in S. [6]

Spec of the ring of dual numbers

Let , the Spec of the ring of dual numbers over a field k and X a scheme over k. Then each amounts to the tangent vector to X at the point that is the image of the closed point of the map. [1] In other words, is the set of tangent vectors to X.

Universal object

Let be the functor represented by a scheme . Under the isomorphism , there is a unique element of that corresponds to the identity map . This unique element is known as the universal object or the universal family (when the objects being classified are families). The universal object acts as a template from which all other elements in for any scheme can be derived via pullback along a morphism from to . [1]

See also

Notes

  1. 1 2 3 Shafarevich 1994 , Ch. VI § 4.1.
  2. Shafarevich 1994 , Ch. VI § 4.4.
  3. In fact, X is determined by its R-points with various rings R: in the precise terms, given schemes X, Y, any natural transformation from the functor to the functor determines a morphism of schemes XY in a natural way.
  4. The Stacks Project, 01J5
  5. The functor of points, Yoneda's lemmma, moduli spaces and universal properties (Brian Osserman), Cor. 3.6
  6. This seems like a standard notation; see for example "Nonabelian Poincare Duality in Algebraic Geometry (Lecture 9)" (PDF).

Related Research Articles

In mathematics, the Yoneda lemma is a fundamental result in category theory. It is an abstract result on functors of the type morphisms into a fixed object. It is a vast generalisation of Cayley's theorem from group theory. It allows the embedding of any locally small category into a category of functors defined on that category. It also clarifies how the embedded category, of representable functors and their natural transformations, relates to the other objects in the larger functor category. It is an important tool that underlies several modern developments in algebraic geometry and representation theory. It is named after Nobuo Yoneda.

In commutative algebra, the prime spectrum of a commutative ring is the set of all prime ideals of , and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

<span class="mw-page-title-main">Algebraic variety</span> Mathematical object studied in the field of algebraic geometry

Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.

In mathematics, restriction of scalars is a functor which, for any finite extension of fields L/k and any algebraic variety X over L, produces another variety ResL/kX, defined over k. It is useful for reducing questions about varieties over large fields to questions about more complicated varieties over smaller fields.

In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

In mathematics, deformation theory is the study of infinitesimal conditions associated with varying a solution P of a problem to slightly different solutions Pε, where ε is a small number, or a vector of small quantities. The infinitesimal conditions are the result of applying the approach of differential calculus to solving a problem with constraints. The name is an analogy to non-rigid structures that deform slightly to accommodate external forces.

In mathematics, particularly category theory, a representable functor is a certain functor from an arbitrary category into the category of sets. Such functors give representations of an abstract category in terms of known structures allowing one to utilize, as much as possible, knowledge about the category of sets in other settings.

This is a glossary of properties and concepts in category theory in mathematics.

In mathematics, algebraic spaces form a generalization of the schemes of algebraic geometry, introduced by Michael Artin for use in deformation theory. Intuitively, schemes are given by gluing together affine schemes using the Zariski topology, while algebraic spaces are given by gluing together affine schemes using the finer étale topology. Alternatively one can think of schemes as being locally isomorphic to affine schemes in the Zariski topology, while algebraic spaces are locally isomorphic to affine schemes in the étale topology.

The étale or algebraic fundamental group is an analogue in algebraic geometry, for schemes, of the usual fundamental group of topological spaces.

In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes.

In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist.

In mathematics, the affine Grassmannian of an algebraic group G over a field k is an ind-scheme—a colimit of finite-dimensional schemes—which can be thought of as a flag variety for the loop group G(k((t))) and which describes the representation theory of the Langlands dual group LG through what is known as the geometric Satake correspondence.

In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and the biregular maps are the isomorphisms of algebraic varieties. Because regular and biregular are very restrictive conditions – there are no non-constant regular functions on projective varieties – the concepts of rational and birational maps are widely used as well; they are partial functions that are defined locally by rational fractions instead of polynomials.

This is a glossary of algebraic geometry.

In algebraic geometry, the tangent space to a functor generalizes the classical construction of a tangent space such as the Zariski tangent space. The construction is based on the following observation. Let X be a scheme over a field k.

In algebraic geometry, a prestackF over a category C equipped with some Grothendieck topology is a category together with a functor p: FC satisfying a certain lifting condition and such that locally isomorphic objects are isomorphic. A stack is a prestack with effective descents, meaning local objects may be patched together to become a global object.

In mathematics, a sheaf of O-modules or simply an O-module over a ringed space (X, O) is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times the restriction of s for any f in O(U) and s in F(U).

In algebraic geometry, a sheaf of algebras on a ringed space X is a sheaf of commutative rings on X that is also a sheaf of -modules. It is quasi-coherent if it is so as a module.

References