Mathematics Subject Classification

Last updated

The Mathematics Subject Classification (MSC) is an alphanumerical classification scheme that has collaboratively been produced by staff of, and based on the coverage of, the two major mathematical reviewing databases, Mathematical Reviews and Zentralblatt MATH. The MSC is used by many mathematics journals, which ask authors of research papers and expository articles to list subject codes from the Mathematics Subject Classification in their papers. The current version is MSC2020.

Contents

Structure

The MSC is a hierarchical scheme, with three levels of structure. A classification can be two, three or five digits long, depending on how many levels of the classification scheme are used.

The first level is represented by a two-digit number, the second by a letter, and the third by another two-digit number. For example:

First level

At the top level, 64 mathematical disciplines are labeled with a unique two-digit number. In addition to the typical areas of mathematical research, there are top-level categories for "History and Biography", "Mathematics Education", and for the overlap with different sciences. Physics (i.e. mathematical physics) is particularly well represented in the classification scheme with a number of different categories including:

All valid MSC classification codes must have at least the first-level identifier.

Second level

The second-level codes are a single letter from the Latin alphabet. These represent specific areas covered by the first-level discipline. The second-level codes vary from discipline to discipline.

For example, for differential geometry, the top-level code is 53, and the second-level codes are:

In addition, the special second-level code "-" is used for specific kinds of materials. These codes are of the form:

The second and third level of these codes are always the same - only the first level changes. For example, it is not valid to use 53- as a classification. Either 53 on its own or, better yet, a more specific code should be used.

Third level

Third-level codes are the most specific, usually corresponding to a specific kind of mathematical object or a well-known problem or research area.

The third-level code 99 exists in every category and means none of the above, but in this section.

Using the scheme

The AMS recommends that papers submitted to its journals for publication have one primary classification and one or more optional secondary classifications. A typical MSC subject class line on a research paper looks like

MSC Primary 03C90; Secondary 03-02;

History

According to the American Mathematical Society (AMS) help page about MSC, [1] the MSC has been revised a number of times since 1940. Based on a scheme to organize AMS's Mathematical Offprint Service (MOS scheme), the AMS Classification was established for the classification of reviews in Mathematical Reviews in the 1960s. It saw various ad-hoc changes. Despite its shortcomings, Zentralblatt für Mathematik started to use it as well in the 1970s. In the late 1980s, a jointly revised scheme with more formal rules was agreed upon by Mathematical Reviews and Zentralblatt für Mathematik under the new name Mathematics Subject Classification. It saw various revisions as MSC1990, MSC2000 and MSC2010. [2] In July 2016, Mathematical Reviews and zbMATH started collecting input from the mathematical community on the next revision of MSC, [3] which was released as MSC2020 in January 2020. [4]

The original classification of older items has not been changed. This can sometimes make it difficult to search for older works dealing with particular topics. Changes at the first level involved the subjects with (present) codes 03, 08, 12-20, 28, 37, 51, 58, 74, 90, 91, 92.

Relation to other classification schemes

For physics papers the Physics and Astronomy Classification Scheme (PACS) is often used. Due to the large overlap between mathematics and physics research it is quite common to see both PACS and MSC codes on research papers, particularly for multidisciplinary journals and repositories such as the arXiv.

The ACM Computing Classification System (CCS) is a similar hierarchical classification scheme for computer science. There is some overlap between the AMS and ACM classification schemes, in subjects related to both mathematics and computer science, however the two schemes differ in the details of their organization of those topics.

The classification scheme used on the arXiv is chosen to reflect the papers submitted. As arXiv is multidisciplinary its classification scheme does not fit entirely with the MSC, ACM or PACS classification schemes. It is common to see codes from one or more of these schemes on individual papers.

First-level areas

See also

Related Research Articles

<span class="mw-page-title-main">Vladimir Arnold</span> Russian mathematician (1937–2010)

Vladimir Igorevich Arnold was a Soviet and Russian mathematician. While he is best known for the Kolmogorov–Arnold–Moser theorem regarding the stability of integrable systems, he made revolutionary and deep contributions in several areas including geometrical theory of dynamical systems theory, algebra, catastrophe theory, topology, algebraic geometry, symplectic geometry, symplectic topology, differential equations, classical mechanics, differential geometric approach to hydrodynamics, geometric analysis and singularity theory, including posing the ADE classification problem, since his first main result—the solution of Hilbert's thirteenth problem in 1957 at the age of 19. He co-founded two new branches of mathematics—KAM theory, and topological Galois theory. He is widely regarded as one of greatest mathematicians of all time.

<span class="mw-page-title-main">Mathematical physics</span> Application of mathematical methods to problems in physics

Mathematical physics refers to the development of mathematical methods for application to problems in physics. The Journal of Mathematical Physics defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics.

Lists of mathematics topics cover a variety of topics related to mathematics. Some of these lists link to hundreds of articles; some link only to a few. The template to the right includes links to alphabetical lists of all mathematical articles. This article brings together the same content organized in a manner better suited for browsing. Lists cover aspects of basic and advanced mathematics, methodology, mathematical statements, integrals, general concepts, mathematical objects, and reference tables. They also cover equations named after people, societies, mathematicians, journals, and meta-lists.

The Leroy P. Steele Prizes are awarded every year by the American Mathematical Society, for distinguished research work and writing in the field of mathematics. Since 1993, there has been a formal division into three categories.

Shlomo Zvi Sternberg, is an American mathematician known for his work in geometry, particularly symplectic geometry and Lie theory.

In mathematics, secondary calculus is a proposed expansion of classical differential calculus on manifolds, to the "space" of solutions of a (nonlinear) partial differential equation. It is a sophisticated theory at the level of jet spaces and employing algebraic methods.

<span class="mw-page-title-main">Institute of Mathematics of National Academy of Sciences of Armenia</span>

The Institute of Mathematics of National Academy of Sciences of Armenia is owned and operated by the Armenian Academy of Sciences, located in Yerevan.

<span class="mw-page-title-main">Robert Bryant (mathematician)</span> American mathematician

Robert Leamon Bryant is an American mathematician. He works at Duke University and specializes in differential geometry.

The International Journal of Geometric Methods in Modern Physics is a peer-reviewed journal, published by World Scientific, covering mathematical physics. It was originally published bimonthly beginning in January 2004; as of 2006 it appears 8 times a year. Editorial policy for the journal specifies that "The journal publishes short communications, research and review articles devoted to the application of geometric methods to quantum field theory, non-perturbative quantum gravity, string and brane theory, quantum mechanics, semi-classical approximations in quantum theory, quantum thermodynamics and statistical physics, quantum computation and control theory."

<span class="mw-page-title-main">Applied mathematics</span> Application of mathematical methods to other fields

Applied mathematics is the application of mathematical methods by different fields such as physics, engineering, medicine, biology, finance, business, computer science, and industry. Thus, applied mathematics is a combination of mathematical science and specialized knowledge. The term "applied mathematics" also describes the professional specialty in which mathematicians work on practical problems by formulating and studying mathematical models.

Math in Moscow (MiM) is a one-semester study abroad program for North American and European undergraduates held at the Independent University of Moscow (IUM) in Moscow, Russia. The program consists mainly of math courses that are taught in English. The program was first offered in 2001, and since 2008 has been run jointly by the Independent University of Moscow, Moscow Center for Continuous Mathematical Education, and the Higher School of Economics (HSE).

<span class="mw-page-title-main">Sergio Albeverio</span> Swiss mathematician

Sergio Albeverio is a Swiss mathematician and mathematical physicist working in numerous fields of mathematics and its applications. In particular he is known for his work in probability theory, analysis, mathematical physics, and in the areas algebra, geometry, number theory, as well as in applications, from natural to social-economic sciences.

Mathematics is a field of study that investigates topics such as number, space, structure, and change.

Mathematics is a broad subject that is commonly divided in many areas that may be defined by their objects of study, by the used methods, or by both. For example, analytic number theory is a subarea of number theory devoted to the use of methods of analysis for the study of natural numbers.

<span class="mw-page-title-main">Richard Palais</span> American mathematician

Richard Sheldon Palais is an American mathematician working in differential geometry.

Robert C. Hermann was an American mathematician and mathematical physicist. In the 1960s Hermann worked on elementary particle physics and quantum field theory, and published books which revealed the interconnections between vector bundles on Riemannian manifolds and gauge theory in physics, before these interconnections became "common knowledge" among physicists in the 1970s.

<i>Journal of Geometry and Physics</i> Academic journal

The Journal of Geometry and Physics is a scientific journal in mathematical physics. Its scope is to stimulate the interaction between geometry and physics by publishing primary research and review articles which are of common interest to practitioners in both fields. The journal is published by Elsevier since 1984.

<span class="mw-page-title-main">Alexander Varchenko</span>

Alexander Nikolaevich Varchenko is a Soviet and Russian mathematician working in geometry, topology, combinatorics and mathematical physics.

References

  1. MR: Help: MSC Primary
  2. Bernd Wegner. Indexierung mathematischer Literatur Die Revision der Mathematics Subject Classification MSC. Institute of Mathematics, TU Berlin. http://fidmath.de/fileadmin/download/graz_wegner.ppt
  3. Announcement of the plan to revise the Mathematics Subject Classification
  4. MSC2020 available now