The Mathematics Subject Classification (MSC) is an alphanumerical classification scheme that has collaboratively been produced by staff of, and based on the coverage of, the two major mathematical reviewing databases, Mathematical Reviews and Zentralblatt MATH. The MSC is used by many mathematics journals, which ask authors of research papers and expository articles to list subject codes from the Mathematics Subject Classification in their papers. The current version is MSC2020.
The MSC is a hierarchical scheme, with three levels of structure. A classification can be two, three or five digits long, depending on how many levels of the classification scheme are used.
The first level is represented by a two-digit number, the second by a letter, and the third by another two-digit number. For example:
At the top level, 64 mathematical disciplines are labeled with a unique two-digit number. In addition to the typical areas of mathematical research, there are top-level categories for "History and Biography", "Mathematics Education", and for the overlap with different sciences. Physics (i.e. mathematical physics) is particularly well represented in the classification scheme with a number of different categories including:
All valid MSC classification codes must have at least the first-level identifier.
The second-level codes are a single letter from the Latin alphabet. These represent specific areas covered by the first-level discipline. The second-level codes vary from discipline to discipline.
For example, for differential geometry, the top-level code is 53, and the second-level codes are:
In addition, the special second-level code "-" is used for specific kinds of materials. These codes are of the form:
The second and third level of these codes are always the same - only the first level changes. For example, it is not valid to use 53- as a classification. Either 53 on its own or, better yet, a more specific code should be used.
Third-level codes are the most specific, usually corresponding to a specific kind of mathematical object or a well-known problem or research area.
The third-level code 99 exists in every category and means none of the above, but in this section.
The AMS recommends that papers submitted to its journals for publication have one primary classification and one or more optional secondary classifications. A typical MSC subject class line on a research paper looks like
MSC Primary 03C90; Secondary 03-02;
This section needs expansion. You can help by adding to it. (January 2014) |
According to the American Mathematical Society (AMS) help page about MSC, [1] the MSC has been revised a number of times since 1940. Based on a scheme to organize AMS's Mathematical Offprint Service (MOS scheme), the AMS Classification was established for the classification of reviews in Mathematical Reviews in the 1960s. It saw various ad-hoc changes. Despite its shortcomings, Zentralblatt für Mathematik started to use it as well in the 1970s. In the late 1980s, a jointly revised scheme with more formal rules was agreed upon by Mathematical Reviews and Zentralblatt für Mathematik under the new name Mathematics Subject Classification. It saw various revisions as MSC1990, MSC2000 and MSC2010. [2] In July 2016, Mathematical Reviews and zbMATH started collecting input from the mathematical community on the next revision of MSC, [3] which was released as MSC2020 in January 2020. [4]
The original classification of older items has not been changed. This can sometimes make it difficult to search for older works dealing with particular topics. Changes at the first level involved the subjects with (present) codes 03, 08, 12-20, 28, 37, 51, 58, 74, 90, 91, 92.
For physics papers the Physics and Astronomy Classification Scheme (PACS) is often used. Due to the large overlap between mathematics and physics research it is quite common to see both PACS and MSC codes on research papers, particularly for multidisciplinary journals and repositories such as the arXiv.
The ACM Computing Classification System (CCS) is a similar hierarchical classification scheme for computer science. There is some overlap between the AMS and ACM classification schemes, in subjects related to both mathematics and computer science, however the two schemes differ in the details of their organization of those topics.
The classification scheme used on the arXiv is chosen to reflect the papers submitted. As arXiv is multidisciplinary its classification scheme does not fit entirely with the MSC, ACM or PACS classification schemes. It is common to see codes from one or more of these schemes on individual papers.
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries.
Mathematics is a field of study that discovers and organizes methods, theories and theorems that are developed and proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory, algebra, geometry, analysis, and set theory.
Vladimir Igorevich Arnold was a Soviet and Russian mathematician. He is best known for the Kolmogorov–Arnold–Moser theorem regarding the stability of integrable systems, and contributed to several areas, including geometrical theory of dynamical systems theory, algebra, catastrophe theory, topology, real algebraic geometry, symplectic geometry, symplectic topology, differential equations, classical mechanics, differential geometric approach to hydrodynamics, geometric analysis and singularity theory, including posing the ADE classification problem.
Mathematical physics refers to the development of mathematical methods for application to problems in physics. The Journal of Mathematical Physics defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics, known as physical mathematics.
Lists of mathematics topics cover a variety of topics related to mathematics. Some of these lists link to hundreds of articles; some link only to a few. The template to the right includes links to alphabetical lists of all mathematical articles. This article brings together the same content organized in a manner better suited for browsing. Lists cover aspects of basic and advanced mathematics, methodology, mathematical statements, integrals, general concepts, mathematical objects, and reference tables. They also cover equations named after people, societies, mathematicians, journals, and meta-lists.
The Leroy P. Steele Prizes are awarded every year by the American Mathematical Society, for distinguished research work and writing in the field of mathematics. Since 1993, there has been a formal division into three categories.
Shlomo Zvi Sternberg was an American mathematician known for his work in geometry, particularly symplectic geometry and Lie theory.
In mathematics, secondary calculus is a proposed expansion of classical differential calculus on manifolds, to the "space" of solutions of a (nonlinear) partial differential equation. It is a sophisticated theory at the level of jet spaces and employing algebraic methods.
James Gilbert Glimm is an American mathematician, former president of the American Mathematical Society, and distinguished professor at Stony Brook University. He has made many contributions in the areas of pure and applied mathematics.
The Institute of Mathematics of National Academy of Sciences of Armenia is owned and operated by the Armenian Academy of Sciences, located in Yerevan.
Robert Leamon Bryant is an American mathematician. He works at Duke University and specializes in differential geometry.
The International Journal of Geometric Methods in Modern Physics is a peer-reviewed journal, published by World Scientific, covering mathematical physics. It was originally published bimonthly beginning in January 2004; as of 2006 it appears 8 times a year. Editorial policy for the journal specifies that "The journal publishes short communications, research and review articles devoted to the application of geometric methods to quantum field theory, non-perturbative quantum gravity, string and brane theory, quantum mechanics, semi-classical approximations in quantum theory, quantum thermodynamics and statistical physics, quantum computation and control theory."
Sergio Albeverio is a Swiss mathematician and mathematical physicist working in numerous fields of mathematics and its applications. In particular he is known for his work in probability theory, analysis, mathematical physics, and in the areas algebra, geometry, number theory, as well as in applications, from natural to social-economic sciences.
Robert C. Hermann was an American mathematician and mathematical physicist. In the 1960s Hermann worked on elementary particle physics and quantum field theory, and published books which revealed the interconnections between vector bundles on Riemannian manifolds and gauge theory in physics, before these interconnections became "common knowledge" among physicists in the 1970s.
The Journal of Geometry and Physics is a scientific journal in mathematical physics. Its scope is to stimulate the interaction between geometry and physics by publishing primary research and review articles which are of common interest to practitioners in both fields. The journal is published by Elsevier since 1984.
Alexander Nikolaevich Varchenko is a Soviet and Russian mathematician working in geometry, topology, combinatorics and mathematical physics.
Alexandre Mikhailovich Vinogradov was a Russian and Italian mathematician. He made important contributions to the areas of differential calculus over commutative algebras, the algebraic theory of differential operators, homological algebra, differential geometry and algebraic topology, mechanics and mathematical physics, the geometrical theory of nonlinear partial differential equations and secondary calculus.