Eulerian path

Last updated
Multigraphs of both Konigsberg Bridges and Five room puzzles have more than two odd vertices (in orange), thus are not Eulerian and hence the puzzles have no solutions. Comparison 7 bridges of Konigsberg 5 room puzzle graphs.svg
Multigraphs of both Königsberg Bridges and Five room puzzles have more than two odd vertices (in orange), thus are not Eulerian and hence the puzzles have no solutions.
Every vertex of this graph has an even degree. Therefore, this is an Eulerian graph. Following the edges in alphabetical order gives an Eulerian circuit/cycle. Labelled Eulergraph.svg
Every vertex of this graph has an even degree. Therefore, this is an Eulerian graph. Following the edges in alphabetical order gives an Eulerian circuit/cycle.

In graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Königsberg problem in 1736. The problem can be stated mathematically like this:

Contents

Given the graph in the image, is it possible to construct a path (or a cycle; i.e., a path starting and ending on the same vertex) that visits each edge exactly once?

Euler proved that a necessary condition for the existence of Eulerian circuits is that all vertices in the graph have an even degree, and stated without proof that connected graphs with all vertices of even degree have an Eulerian circuit. The first complete proof of this latter claim was published posthumously in 1873 by Carl Hierholzer. [1] This is known as Euler's Theorem:

A connected graph has an Euler cycle if and only if every vertex has even degree.

The term Eulerian graph has two common meanings in graph theory. One meaning is a graph with an Eulerian circuit, and the other is a graph with every vertex of even degree. These definitions coincide for connected graphs. [2]

For the existence of Eulerian trails it is necessary that zero or two vertices have an odd degree; this means the Königsberg graph is not Eulerian. If there are no vertices of odd degree, all Eulerian trails are circuits. If there are exactly two vertices of odd degree, all Eulerian trails start at one of them and end at the other. A graph that has an Eulerian trail but not an Eulerian circuit is called semi-Eulerian.

Definition

An Eulerian trail, [note 1] or Euler walk, in an undirected graph is a walk that uses each edge exactly once. If such a walk exists, the graph is called traversable or semi-eulerian. [3]

An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once. If such a cycle exists, the graph is called Eulerian or unicursal. [4] The term "Eulerian graph" is also sometimes used in a weaker sense to denote a graph where every vertex has even degree. For finite connected graphs the two definitions are equivalent, while a possibly unconnected graph is Eulerian in the weaker sense if and only if each connected component has an Eulerian cycle.

For directed graphs, "path" has to be replaced with directed path and "cycle" with directed cycle .

The definition and properties of Eulerian trails, cycles and graphs are valid for multigraphs as well.

An Eulerian orientation of an undirected graph G is an assignment of a direction to each edge of G such that, at each vertex v, the indegree of v equals the outdegree of v. Such an orientation exists for any undirected graph in which every vertex has even degree, and may be found by constructing an Euler tour in each connected component of G and then orienting the edges according to the tour. [5] Every Eulerian orientation of a connected graph is a strong orientation, an orientation that makes the resulting directed graph strongly connected.

Properties

Constructing Eulerian trails and circuits

Using Eulerian trails to solve puzzles involving drawing a shape with a continuous stroke:
As the Haus vom Nikolaus puzzle has two odd vertices (orange), the trail must start at one and end at the other.
Annie Pope's with four odd vertices has no solution.
If there are no odd vertices, the trail can start anywhere and forms an Eulerian cycle.
Loose ends are considered vertices of degree 1.
The graph must also be connected. Eulerian path puzzles.svg
Using Eulerian trails to solve puzzles involving drawing a shape with a continuous stroke:
  1. As the Haus vom Nikolaus puzzle has two odd vertices (orange), the trail must start at one and end at the other.
  2. Annie Pope's with four odd vertices has no solution.
  3. If there are no odd vertices, the trail can start anywhere and forms an Eulerian cycle.
  4. Loose ends are considered vertices of degree 1.
  5. The graph must also be connected.

Fleury's algorithm

Fleury's algorithm is an elegant but inefficient algorithm that dates to 1883. [7] Consider a graph known to have all edges in the same component and at most two vertices of odd degree. The algorithm starts at a vertex of odd degree, or, if the graph has none, it starts with an arbitrarily chosen vertex. At each step it chooses the next edge in the path to be one whose deletion would not disconnect the graph, unless there is no such edge, in which case it picks the remaining edge left at the current vertex. It then moves to the other endpoint of that edge and deletes the edge. At the end of the algorithm there are no edges left, and the sequence from which the edges were chosen forms an Eulerian cycle if the graph has no vertices of odd degree, or an Eulerian trail if there are exactly two vertices of odd degree.

While the graph traversal in Fleury's algorithm is linear in the number of edges, i.e. , we also need to factor in the complexity of detecting bridges. If we are to re-run Tarjan's linear time bridge-finding algorithm [8] after the removal of every edge, Fleury's algorithm will have a time complexity of . A dynamic bridge-finding algorithm of Thorup (2000) allows this to be improved to , but this is still significantly slower than alternative algorithms.

Hierholzer's algorithm

Hierholzer's 1873 paper provides a different method for finding Euler cycles that is more efficient than Fleury's algorithm:

By using a data structure such as a doubly linked list to maintain the set of unused edges incident to each vertex, to maintain the list of vertices on the current tour that have unused edges, and to maintain the tour itself, the individual operations of the algorithm (finding unused edges exiting each vertex, finding a new starting vertex for a tour, and connecting two tours that share a vertex) may be performed in constant time each, so the overall algorithm takes linear time, . [9]

This algorithm may also be implemented with a deque. Because it is only possible to get stuck when the deque represents a closed tour, one should rotate the deque by removing edges from the tail and adding them to the head until unstuck, and then continue until all edges are accounted for. This also takes linear time, as the number of rotations performed is never larger than (intuitively, any "bad" edges are moved to the head, while fresh edges are added to the tail)

Orthographic projections and Schlegel diagrams with Hamiltonian cycles of the vertices of the five platonic solids - only the octahedron has an Eulerian path or cycle, by extending its path with the dotted one
.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" * ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}
.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}
v
t
e Hamiltonian platonic graphs.svg
Orthographic projections and Schlegel diagrams with Hamiltonian cycles of the vertices of the five platonic solids only the octahedron has an Eulerian path or cycle, by extending its path with the dotted one

Counting Eulerian circuits

Complexity issues

The number of Eulerian circuits in digraphs can be calculated using the so-called BEST theorem , named after de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte. The formula states that the number of Eulerian circuits in a digraph is the product of certain degree factorials and the number of rooted arborescences. The latter can be computed as a determinant, by the matrix tree theorem, giving a polynomial time algorithm.

BEST theorem is first stated in this form in a "note added in proof" to the Aardenne-Ehrenfest and de Bruijn paper (1951). The original proof was bijective and generalized the de Bruijn sequences. It is a variation on an earlier result by Smith and Tutte (1941).

Counting the number of Eulerian circuits on undirected graphs is much more difficult. This problem is known to be #P-complete. [10] In a positive direction, a Markov chain Monte Carlo approach, via the Kotzig transformations (introduced by Anton Kotzig in 1968) is believed to give a sharp approximation for the number of Eulerian circuits in a graph, though as yet there is no proof of this fact (even for graphs of bounded degree).

Special cases

An asymptotic formula for the number of Eulerian circuits in the complete graphs was determined by McKay and Robinson (1995): [11]

A similar formula was later obtained by M.I. Isaev (2009) for complete bipartite graphs: [12]

Applications

Eulerian trails are used in bioinformatics to reconstruct the DNA sequence from its fragments. [13] They are also used in CMOS circuit design to find an optimal logic gate ordering. [14] There are some algorithms for processing trees that rely on an Euler tour of the tree (where each edge is treated as a pair of arcs). [15] [16] The de Bruijn sequences can be constructed as Eulerian trails of de Bruijn graphs. [17]

In infinite graphs

An infinite graph with all vertex degrees equal to four but with no Eulerian line Kely graph of F2 clear.svg
An infinite graph with all vertex degrees equal to four but with no Eulerian line

In an infinite graph, the corresponding concept to an Eulerian trail or Eulerian cycle is an Eulerian line, a doubly-infinite trail that covers all of the edges of the graph. It is not sufficient for the existence of such a trail that the graph be connected and that all vertex degrees be even; for instance, the infinite Cayley graph shown, with all vertex degrees equal to four, has no Eulerian line. The infinite graphs that contain Eulerian lines were characterized by Erdõs, Grünwald & Weiszfeld (1936). For an infinite graph or multigraph G to have an Eulerian line, it is necessary and sufficient that all of the following conditions be met: [18] [19]

Undirected Eulerian graphs

Euler stated a necessary condition for a finite graph to be Eulerian as all vertices must have even degree. Hierholzer proved this is a sufficient condition in a paper published in 1873. This leads to the following necessary and sufficient statement for what a finite graph must have to be Eulerian: An undirected connected finite graph is Eulerian if and only if every vertex of G has even degree. [20]

The following result was proved by Veblen in 1912: An undirected connected graph is Eulerian if and only if it is the disjoint union of some cycles. [20]

A directed graph with all even degrees that is not Eulerian, serving as a counterexample to the statement that a sufficient condition for a directed graph to be Eulerian is that it has all even degrees Even directed graph that is not Eulerian counterexample.svg
A directed graph with all even degrees that is not Eulerian, serving as a counterexample to the statement that a sufficient condition for a directed graph to be Eulerian is that it has all even degrees

Hierholzer developed a linear time algorithm for constructing an Eulerian tour in an undirected graph.

Directed Eulerian graphs

It is possible to have a directed graph that has all even out-degrees but is not Eulerian. Since an Eulerian circuit leaves a vertex the same number of times as it enters that vertex, a necessary condition for an Eulerian circuit to exist is that the in-degree and out-degree are equal at each vertex. Obviously, connectivity is also necessary. König proved that these conditions are also sufficient. That is, a directed graph is Eulerian if and only if it is connected and the in-degree and out-degree are equal at each vertex. [20]

In this theorem it doesn't matter whether "connected" means "weakly connected" or "strongly connected" since they are equivalent for Eulerian graphs.

Hierholzer's linear time algorithm for constructing an Eulerian tour is also applicable to directed graphs. [20]

Mixed Eulerian graphs

This mixed graph is Eulerian. The graph is even but not symmetric which proves that evenness and symmetricness are not necessary and sufficient conditions for a mixed graph to be Eulerian. Eulerian mixed graph that is even but not symmetric proving that evenness and symmetricness is not a necessary and sufficient condition for a mixed graph to be Eulerian.svg
This mixed graph is Eulerian. The graph is even but not symmetric which proves that evenness and symmetricness are not necessary and sufficient conditions for a mixed graph to be Eulerian.

All mixed graphs that are both even and symmetric are guaranteed to be Eulerian. However, this is not a necessary condition, as it is possible to construct a non-symmetric, even graph that is Eulerian. [20]

Ford and Fulkerson proved in 1962 in their book Flows in Networks a necessary and sufficient condition for a graph to be Eulerian, viz., that every vertex must be even and satisfy the balance condition, i.e. for every subset of vertices S, the difference between the number of arcs leaving S and entering S must be less than or equal to the number of edges incident with S. [20]

The process of checking if a mixed graph is Eulerian is harder than checking if an undirected or directed graph is Eulerian because the balanced set condition concerns every possible subset of vertices.

An even mixed graph that violates the balanced set condition and is therefore not Eulerian. Even mixed graph that violates the balanced set condition and is therefore not Eulerian.svg
An even mixed graph that violates the balanced set condition and is therefore not Eulerian.
An even mixed graph that satisfies the balanced set condition and is therefore an Eulerian mixed graph. Even mixed graph satisfies the balanced set condition and is therefore an Eulerian mixed graph.svg
An even mixed graph that satisfies the balanced set condition and is therefore an Eulerian mixed graph.

See also

Notes

  1. 1 2 Some people reserve the terms path and cycle to mean non-self-intersecting path and cycle. A (potentially) self-intersecting path is known as a trail or an open walk; and a (potentially) self-intersecting cycle, a circuit or a closed walk. This ambiguity can be avoided by using the terms Eulerian trail and Eulerian circuit when self-intersection is allowed.

Related Research Articles

<span class="mw-page-title-main">Tree (graph theory)</span> Undirected, connected and acyclic graph

In graph theory, a tree is an undirected graph in which any two vertices are connected by exactly one path, or equivalently a connected acyclic undirected graph. A forest is an undirected graph in which any two vertices are connected by at most one path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees.

<span class="mw-page-title-main">Cycle (graph theory)</span> Trail in which only the first and last vertices are equal.

In graph theory, a cycle in a graph is a non-empty trail in which only the first and last vertices are equal. A directed cycle in a directed graph is a non-empty directed trail in which only the first and last vertices are equal.

<span class="mw-page-title-main">Chinese postman problem</span> Finding shortest walks through all graph edges

In graph theory, a branch of mathematics and computer science, Guan's route problem, the Chinese postman problem, postman tour or route inspection problem is to find a shortest closed path or circuit that visits every edge of an (connected) undirected graph at least once. When the graph has an Eulerian circuit, that circuit is an optimal solution. Otherwise, the optimization problem is to find the smallest number of graph edges to duplicate so that the resulting multigraph does have an Eulerian circuit. It can be solved in polynomial time, unlike the Travelling Salesman Problem which is NP-hard. It is different from the Travelling Salesman Problem in that the travelling salesman cannot repeat visited nodes.

<span class="mw-page-title-main">Seven Bridges of Königsberg</span> Classic problem in graph theory

The Seven Bridges of Königsberg is a historically notable problem in mathematics. Its negative resolution by Leonhard Euler, in 1736, laid the foundations of graph theory and prefigured the idea of topology.

<span class="mw-page-title-main">Bipartite graph</span> Graph divided into two independent sets

In the mathematical field of graph theory, a bipartite graph is a graph whose vertices can be divided into two disjoint and independent sets and , that is, every edge connects a vertex in to one in . Vertex sets and are usually called the parts of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles.

<span class="mw-page-title-main">Hamiltonian path</span> Path in a graph that visits each vertex exactly once

In the mathematical field of graph theory, a Hamiltonian path is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path. The computational problems of determining whether such paths and cycles exist in graphs are NP-complete; see Hamiltonian path problem for details.

In graph theory, a branch of mathematics, the (binary) cycle space of an undirected graph is the set of its even-degree subgraphs.

This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges.

<span class="mw-page-title-main">Graph (discrete mathematics)</span> Vertices connected in pairs by edges

In discrete mathematics, particularly in graph theory, a graph is a structure consisting of a set of objects where some pairs of the objects are in some sense "related". The objects are represented by abstractions called vertices and each of the related pairs of vertices is called an edge. Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges.

<span class="mw-page-title-main">Edge coloring</span> Problem of coloring a graphs edges such that meeting edges do not match

In graph theory, a proper edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blue, and green. Edge colorings are one of several different types of graph coloring. The edge-coloring problem asks whether it is possible to color the edges of a given graph using at most k different colors, for a given value of k, or with the fewest possible colors. The minimum required number of colors for the edges of a given graph is called the chromatic index of the graph. For example, the edges of the graph in the illustration can be colored by three colors but cannot be colored by two colors, so the graph shown has chromatic index three.

In the mathematical theory of matroids, a graphic matroid is a matroid whose independent sets are the forests in a given finite undirected graph. The dual matroids of graphic matroids are called co-graphic matroids or bond matroids. A matroid that is both graphic and co-graphic is sometimes called a planar matroid ; these are exactly the graphic matroids formed from planar graphs.

<span class="mw-page-title-main">Degree (graph theory)</span> Number of edges touching a vertex in a graph

In graph theory, the degree of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge. The degree of a vertex is denoted or . The maximum degree of a graph is denoted by , and is the maximum of 's vertices' degrees. The minimum degree of a graph is denoted by , and is the minimum of 's vertices' degrees. In the multigraph shown on the right, the maximum degree is 5 and the minimum degree is 0.

In graph theory, a part of discrete mathematics, the BEST theorem gives a product formula for the number of Eulerian circuits in directed (oriented) graphs. The name is an acronym of the names of people who discovered it: N. G. de Bruijn, Tatyana Ehrenfest, Cedric Smith and W. T. Tutte.

<span class="mw-page-title-main">Dual graph</span> Graph representing faces of another graph

In the mathematical discipline of graph theory, the dual graph of a planar graph G is a graph that has a vertex for each face of G. The dual graph has an edge for each pair of faces in G that are separated from each other by an edge, and a self-loop when the same face appears on both sides of an edge. Thus, each edge e of G has a corresponding dual edge, whose endpoints are the dual vertices corresponding to the faces on either side of e. The definition of the dual depends on the choice of embedding of the graph G, so it is a property of plane graphs rather than planar graphs. For planar graphs generally, there may be multiple dual graphs, depending on the choice of planar embedding of the graph.

The Christofides algorithm or Christofides–Serdyukov algorithm is an algorithm for finding approximate solutions to the travelling salesman problem, on instances where the distances form a metric space . It is an approximation algorithm that guarantees that its solutions will be within a factor of 3/2 of the optimal solution length, and is named after Nicos Christofides and Anatoliy I. Serdyukov ; the latter discovered it independently in 1976.

<span class="mw-page-title-main">Handshaking lemma</span> Every graph has evenly many odd vertices

In graph theory, a branch of mathematics, the handshaking lemma is the statement that, in every finite undirected graph, the number of vertices that touch an odd number of edges is even. For example, if there is a party of people who shake hands, the number of people who shake an odd number of other people's hands is even. The handshaking lemma is a consequence of the degree sum formula, also sometimes called the handshaking lemma, according to which the sum of the degrees equals twice the number of edges in the graph. Both results were proven by Leonhard Euler in his famous paper on the Seven Bridges of Königsberg that began the study of graph theory.

In graph theory, a strong orientation of an undirected graph is an assignment of a direction to each edge that makes it into a strongly connected graph.

In mathematics, Veblen's theorem, introduced by Oswald Veblen, states that the set of edges of a finite graph can be written as a union of disjoint simple cycles if and only if every vertex has even degree. Thus, it is closely related to the theorem of Euler (1736) that a finite graph has an Euler tour if and only if it is connected and every vertex has even degree. Indeed, a representation of a graph as a union of simple cycles may be obtained from an Euler tour by repeatedly splitting the tour into smaller cycles whenever there is a repeated vertex. However, Veblen's theorem applies also to disconnected graphs, and can be generalized to infinite graphs in which every vertex has finite degree.

In graph theory, an orientation of an undirected graph is an assignment of a direction to each edge, turning the initial graph into a directed graph.

The mixed Chinese postman problem (MCPP or MCP) is the search for the shortest traversal of a graph with a set of vertices V, a set of undirected edges E with positive rational weights, and a set of directed arcs A with positive rational weights that covers each edge or arc at least once at minimal cost. The problem has been proven to be NP-complete by Papadimitriou. The mixed Chinese postman problem often arises in arc routing problems such as snow ploughing, where some streets are too narrow to traverse in both directions while other streets are bidirectional and can be plowed in both directions. It is easy to check if a mixed graph has a postman tour of any size by verifying if the graph is strongly connected. The problem is NP hard if we restrict the postman tour to traverse each arc exactly once or if we restrict it to traverse each edge exactly once, as proved by Zaragoza Martinez.

References

  1. N. L. Biggs, E. K. Lloyd and R. J. Wilson, Graph Theory, 1736–1936 , Clarendon Press, Oxford, 1976, 8–9, ISBN   0-19-853901-0.
  2. C. L. Mallows, N. J. A. Sloane (1975). "Two-graphs, switching classes and Euler graphs are equal in number" (PDF). SIAM Journal on Applied Mathematics . 28 (4): 876–880. doi:10.1137/0128070. JSTOR   2100368.
  3. Jun-ichi Yamaguchi, Introduction of Graph Theory.
  4. Schaum's outline of theory and problems of graph theory By V. K. Balakrishnan .
  5. Schrijver, A. (1983), "Bounds on the number of Eulerian orientations", Combinatorica, 3 (3–4): 375–380, doi:10.1007/BF02579193, MR   0729790, S2CID   13708977 .
  6. 1 2 3 4 Pólya, George; Tarjan, Robert E.; Woods, Donald R. (October 2009), "Hamiltonian and Eulerian Paths", Notes on Introductory Combinatorics, Birkhäuser Boston, pp. 157–168, doi:10.1007/978-0-8176-4953-1_13, ISBN   9780817649531
  7. Fleury, Pierre-Henry (1883), "Deux problèmes de Géométrie de situation", Journal de mathématiques élémentaires, 2nd ser. (in French), 2: 257–261.
  8. Tarjan, R. Endre (1974), "A note on finding the bridges of a graph", Information Processing Letters, 2 (6): 160–161, doi:10.1016/0020-0190(74)90003-9, MR   0349483 .
  9. Fleischner, Herbert (1991), "X.1 Algorithms for Eulerian Trails", Eulerian Graphs and Related Topics: Part 1, Volume 2, Annals of Discrete Mathematics, vol. 50, Elsevier, pp.  X.1–13, ISBN   978-0-444-89110-5 .
  10. Brightwell and Winkler, "Note on Counting Eulerian Circuits", 2004.
  11. Brendan McKay and Robert W. Robinson, Asymptotic enumeration of eulerian circuits in the complete graph, Combinatorica , 10 (1995), no. 4, 367–377.
  12. M.I. Isaev (2009). "Asymptotic number of Eulerian circuits in complete bipartite graphs". Proc. 52-nd MFTI Conference (in Russian). Moscow: 111–114.
  13. Pevzner, Pavel A.; Tang, Haixu; Waterman, Michael S. (2001). "An Eulerian trail approach to DNA fragment assembly". Proceedings of the National Academy of Sciences of the United States of America. 98 (17): 9748–9753. Bibcode:2001PNAS...98.9748P. doi: 10.1073/pnas.171285098 . PMC   55524 . PMID   11504945.
  14. Roy, Kuntal (2007). "Optimum Gate Ordering of CMOS Logic Gates Using Euler Path Approach: Some Insights and Explanations". Journal of Computing and Information Technology. 15 (1): 85–92. doi: 10.2498/cit.1000731 .
  15. Tarjan, Robert E.; Vishkin, Uzi (1985). "An efficient parallel biconnectivity algorithm". SIAM Journal on Computing. 14 (4): 862–874. CiteSeerX   10.1.1.465.8898 . doi:10.1137/0214061.
  16. Berkman, Omer; Vishkin, Uzi (Apr 1994). "Finding level-ancestors in trees". J. Comput. Syst. Sci. 2. 48 (2): 214–230. doi:10.1016/S0022-0000(05)80002-9.
  17. Savage, Carla (January 1997). "A Survey of Combinatorial Gray Codes". SIAM Review. 39 (4): 605–629. doi:10.1137/S0036144595295272. ISSN   0036-1445.
  18. Komjáth, Peter (2013), "Erdős's work on infinite graphs", Erdös centennial, Bolyai Soc. Math. Stud., vol. 25, János Bolyai Math. Soc., Budapest, pp. 325–345, doi:10.1007/978-3-642-39286-3_11, MR   3203602 .
  19. Bollobás, Béla (1998), Modern graph theory, Graduate Texts in Mathematics, vol. 184, Springer-Verlag, New York, p. 20, doi:10.1007/978-1-4612-0619-4, ISBN   0-387-98488-7, MR   1633290 .
  20. 1 2 3 4 5 6 Corberán, Ángel; Laporte, Gilbert, eds. (2015). Arc Routing: Problems, Methods, and Applications. MOS-SIAM Series on Optimization. SIAM. doi:10.1137/1.9781611973679. ISBN   978-1-61197-366-2 . Retrieved 2022-08-19.

Bibliography