Eulerian matroid

Last updated

In matroid theory, an Eulerian matroid is a matroid whose elements can be partitioned into a collection of disjoint circuits.

Contents

Examples

In a uniform matroid , the circuits are the sets of exactly elements. Therefore, a uniform matroid is Eulerian if and only if is a divisor of . For instance, the -point lines are Eulerian if and only if is divisible by three.

The Fano plane has two kinds of circuits: sets of three collinear points, and sets of four points that do not contain any line. The three-point circuits are the complements of the four-point circuits, so it is possible to partition the seven points of the plane into two circuits, one of each kind. Thus, the Fano plane is also Eulerian.

Relation to Eulerian graphs

Eulerian matroids were defined by Welsh (1969) as a generalization of the Eulerian graphs, graphs in which every vertex has even degree. By Veblen's theorem the edges of every such graph may be partitioned into simple cycles, from which it follows that the graphic matroids of Eulerian graphs are examples of Eulerian matroids. [1]

The definition of an Eulerian graph above allows graphs that are disconnected, so not every such graph has an Euler tour. Wilde (1975) observes that the graphs that have Euler tours can be characterized in an alternative way that generalizes to matroids: a graph has an Euler tour if and only if it can be formed from some other graph , and a cycle in , by contracting the edges of that do not belong to . In the contracted graph, generally stops being a simple cycle and becomes instead an Euler tour. Analogously, Wilde considers the matroids that can be formed from a larger matroid by contracting the elements that do not belong to some particular circuit. He shows that this property is trivial for general matroids (it implies only that each element belongs to at least one circuit) but can be used to characterize the Eulerian matroids among the binary matroids, matroids representable over GF(2): a binary matroid is Eulerian if and only if it is the contraction of another binary matroid onto a circuit. [2]

Duality with bipartite matroids

For planar graphs, the properties of being Eulerian and bipartite are dual: a planar graph is Eulerian if and only if its dual graph is bipartite. As Welsh showed, this duality extends to binary matroids: a binary matroid is Eulerian if and only if its dual matroid is a bipartite matroid, a matroid in which every circuit has even cardinality. [1] [3]

For matroids that are not binary, the duality between Eulerian and bipartite matroids may break down. For instance, the uniform matroid is Eulerian but its dual is not bipartite, as its circuits have size five. The self-dual uniform matroid is bipartite but not Eulerian.

Alternative characterizations

Because of the correspondence between Eulerian and bipartite matroids among the binary matroids, the binary matroids that are Eulerian may be characterized in alternative ways. The characterization of Wilde (1975) is one example; two more are that a binary matroid is Eulerian if and only if every element belongs to an odd number of circuits, if and only if the whole matroid has an odd number of partitions into circuits. [4] Lovász & Seress (1993) collect several additional characterizations of Eulerian binary matroids, from which they derive a polynomial time algorithm for testing whether a binary matroid is Eulerian. [5]

Computational complexity

Any algorithm that tests whether a given matroid is Eulerian, given access to the matroid via an independence oracle, must perform an exponential number of oracle queries, and therefore cannot take polynomial time. In particular, it is difficult to distinguish a uniform matroid on a set of elements, with all cycles of size , from a paving matroid that differs from the uniform matroid in having two complementary cycles of size . The paving matroid is Eulerian but the uniform matroid is not. Any oracle algorithm, applied to the uniform matroid, must make queries, an exponential number, to verify that the input is not instead an instance of the paving matroid. [6]

Eulerian extension

If is a binary matroid that is not Eulerian, then it has a unique Eulerian extension, a binary matroid whose elements are the elements of together with one additional element , such that the restriction of to the elements of is isomorphic to . The dual of is a bipartite matroid formed from the dual of by adding to every odd circuit. [7]

Related Research Articles

In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats. In the language of partially ordered sets, a finite matroid is equivalent to a geometric lattice.

<span class="mw-page-title-main">Hamiltonian path</span> Path in a graph that visits each vertex exactly once

In the mathematical field of graph theory, a Hamiltonian path is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path. Determining whether such paths and cycles exist in graphs are NP-complete.

In graph theory, a branch of mathematics, the (binary) cycle space of an undirected graph is the set of its even-degree subgraphs.

<span class="mw-page-title-main">Eulerian path</span> Trail in a graph that visits each edge once

In graph theory, an Eulerian trail is a trail in a finite graph that visits every edge exactly once. Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Königsberg problem in 1736. The problem can be stated mathematically like this:

In the mathematical theory of matroids, a graphic matroid is a matroid whose independent sets are the forests in a given finite undirected graph. The dual matroids of graphic matroids are called co-graphic matroids or bond matroids. A matroid that is both graphic and co-graphic is sometimes called a planar matroid ; these are exactly the graphic matroids formed from planar graphs.

<span class="mw-page-title-main">Dual graph</span> Graph representing faces of another graph

In the mathematical discipline of graph theory, the dual graph of a plane graph G is a graph that has a vertex for each face of G. The dual graph has an edge for each pair of faces in G that are separated from each other by an edge, and a self-loop when the same face appears on both sides of an edge. Thus, each edge e of G has a corresponding dual edge, whose endpoints are the dual vertices corresponding to the faces on either side of e. The definition of the dual depends on the choice of embedding of the graph G, so it is a property of plane graphs rather than planar graphs. For planar graphs generally, there may be multiple dual graphs, depending on the choice of planar embedding of the graph.

<span class="mw-page-title-main">Peripheral cycle</span> Graph cycle which does not separate remaining elements

In graph theory, a peripheral cycle in an undirected graph is, intuitively, a cycle that does not separate any part of the graph from any other part. Peripheral cycles were first studied by Tutte (1963), and play important roles in the characterization of planar graphs and in generating the cycle spaces of nonplanar graphs.

In combinatorial optimization, the matroid intersection problem is to find a largest common independent set in two matroids over the same ground set. If the elements of the matroid are assigned real weights, the weighted matroid intersection problem is to find a common independent set with the maximum possible weight. These problems generalize many problems in combinatorial optimization including finding maximum matchings and maximum weight matchings in bipartite graphs and finding arborescences in directed graphs.

In matroid theory, the dual of a matroid is another matroid that has the same elements as , and in which a set is independent if and only if has a basis set disjoint from it.

In matroid theory, a field within mathematics, a gammoid is a certain kind of matroid, describing sets of vertices that can be reached by vertex-disjoint paths in a directed graph.

In mathematics, a uniform matroid is a matroid in which the independent sets are exactly the sets containing at most r elements, for some fixed integer r. An alternative definition is that every permutation of the elements is a symmetry.

In the mathematical theory of matroids, a minor of a matroid M is another matroid N that is obtained from M by a sequence of restriction and contraction operations. Matroid minors are closely related to graph minors, and the restriction and contraction operations by which they are formed correspond to edge deletion and edge contraction operations in graphs. The theory of matroid minors leads to structural decompositions of matroids, and characterizations of matroid families by forbidden minors, analogous to the corresponding theory in graphs.

In mathematics, a partition matroid or partitional matroid is a matroid that is a direct sum of uniform matroids. It is defined over a base set in which the elements are partitioned into different categories. For each category, there is a capacity constraint - a maximum number of allowed elements from this category. The independent sets of a partition matroid are exactly the sets in which, for each category, the number of elements from this category is at most the category capacity.

In matroid theory, a binary matroid is a matroid that can be represented over the finite field GF(2). That is, up to isomorphism, they are the matroids whose elements are the columns of a (0,1)-matrix and whose sets of elements are independent if and only if the corresponding columns are linearly independent in GF(2).

In mathematics and computer science, a matroid oracle is a subroutine through which an algorithm may access a matroid, an abstract combinatorial structure that can be used to describe the linear dependencies between vectors in a vector space or the spanning trees of a graph, among other applications.

In mathematics, a bipartite matroid is a matroid all of whose circuits have even size.

In the mathematical theory of matroids, the rank of a matroid is the maximum size of an independent set in the matroid. The rank of a subset S of elements of the matroid is, similarly, the maximum size of an independent subset of S, and the rank function of the matroid maps sets of elements to their ranks.

In the mathematical theory of matroids, a matroid representation is a family of vectors whose linear independence relation is the same as that of a given matroid. Matroid representations are analogous to group representations; both types of representation provide abstract algebraic structures with concrete descriptions in terms of linear algebra.

<span class="mw-page-title-main">Paving matroid</span> Matroid without short circuits

In the mathematical theory of matroids, a paving matroid is a matroid in which every circuit has size at least as large as the matroid's rank. In a matroid of rank every circuit has size at most , so it is equivalent to define paving matroids as the matroids in which the size of every circuit belongs to the set . It has been conjectured that almost all matroids are paving matroids.

In mathematics, a basis of a matroid is a maximal independent set of the matroid—that is, an independent set that is not contained in any other independent set.

References

  1. 1 2 Welsh, D. J. A. (1969), "Euler and bipartite matroids", Journal of Combinatorial Theory , 6: 375–377, doi: 10.1016/s0021-9800(69)80033-5 , MR   0237368 .
  2. Wilde, P. J. (1975), "The Euler circuit theorem for binary matroids", Journal of Combinatorial Theory , Series B, 18: 260–264, doi: 10.1016/0095-8956(75)90051-9 , MR   0384577 .
  3. Harary, Frank; Welsh, Dominic (1969), "Matroids versus graphs", The Many Facets of Graph Theory (Proc. Conf., Western Mich. Univ., Kalamazoo, Mich., 1968), Lecture Notes in Mathematics, vol. 110, Berlin: Springer, pp. 155–170, doi:10.1007/BFb0060114, MR   0263666 .
  4. Shikare, M. M. (2001), "New characterizations of Eulerian and bipartite binary matroids" (PDF), Indian Journal of Pure and Applied Mathematics, 32 (2): 215–219, MR   1820861, archived from the original (PDF) on 2015-07-06, retrieved 2012-08-28.
  5. Lovász, László; Seress, Ákos (1993), "The cocycle lattice of binary matroids", European Journal of Combinatorics, 14 (3): 241–250, doi: 10.1006/eujc.1993.1027 , MR   1215334 .
  6. Jensen, Per M.; Korte, Bernhard (1982), "Complexity of matroid property algorithms", SIAM Journal on Computing , 11 (1): 184–190, doi:10.1137/0211014, MR   0646772 .
  7. Sebő, András (1990), "The cographic multiflow problem: an epilogue", Polyhedral combinatorics (Morristown, NJ, 1989), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 1, Providence, RI: Amer. Math. Soc., pp. 203–234, MR   1105128 .