Pre-algebra

Last updated
A visual proof of the Pythagorean theorem Visual proof of the Pythagorean theorem by area-preserving shearing.gif
A visual proof of the Pythagorean theorem

Pre-algebra is a common name for a course in middle school mathematics in the United States, usually taught in the 7th grade or 8th grade. [1] The objective of it is to prepare students for the study of algebra. Usually, Algebra I is taught in the 8th or 9th grade. [2]

Contents

As an intermediate stage after arithmetic, pre-algebra helps students pass specific conceptual barriers. Students are introduced to the idea that an equals sign, rather than just being the answer to a question as in basic arithmetic, means that two sides are equivalent and can be manipulated together. They also learn how numbers, variables, and words can be used in the same ways. [3]

Subjects

Subjects taught in a prealgebra course may include:

Prealgebra may include subjects from geometry, especially to further the understanding of algebra in applications to area and volume.

Prealgebra may also include subjects from statistics to identify probability and interpret data.

Proficiency in prealgebra is an indicator of college success. It can also be taught as a remedial course for college students. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Arithmetic</span> Branch of elementary mathematics

Arithmetic is an elementary branch of mathematics that studies numerical operations like addition, subtraction, multiplication, and division. In a wider sense, it also includes exponentiation, extraction of roots, and taking logarithms. Arithmetic systems can be distinguished based on the type of number they operate on. Integer arithmetic restricts itself to calculations with positive and negative whole numbers. Rational number arithmetic involves operations on fractions that lie between integers. Real number arithmetic includes calculations with both rational and irrational numbers and covers the complete number line. Another distinction is based on the numeral system employed to perform calculations. Decimal arithmetic is the most common. It uses the basic numerals from 0 to 9 and their combinations to express numbers. Binary arithmetic, by contrast, is used by most computers and represents numbers as combinations of the basic numerals 0 and 1. Some arithmetic systems operate on mathematical objects other than numbers, such as interval arithmetic and matrix arithmetic.

<span class="mw-page-title-main">Elementary algebra</span> Basic concepts of algebra

Elementary algebra, also known as college algebra, encompasses the basic concepts of algebra. It is often contrasted with arithmetic: arithmetic deals with specified numbers, whilst algebra introduces variables.

<span class="mw-page-title-main">Number theory</span> Mathematics of integer properties

Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics." Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers, or defined as generalizations of the integers.

In mathematics, a polynomial is a mathematical expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2yz + 1.

A computer algebra system (CAS) or symbolic algebra system (SAS) is any mathematical software with the ability to manipulate mathematical expressions in a way similar to the traditional manual computations of mathematicians and scientists. The development of the computer algebra systems in the second half of the 20th century is part of the discipline of "computer algebra" or "symbolic computation", which has spurred work in algorithms over mathematical objects such as polynomials.

<i>La Géométrie</i> Mathematical appendix to Descartes Discourse on Method, published in 1637

La Géométrie was published in 1637 as an appendix to Discours de la méthode, written by René Descartes. In the Discourse, Descartes presents his method for obtaining clarity on any subject. La Géométrie and two other appendices, also by Descartes, La Dioptrique (Optics) and Les Météores (Meteorology), were published with the Discourse to give examples of the kinds of successes he had achieved following his method.

<span class="mw-page-title-main">Mathematics education</span> Mathematics teaching, learning and scholarly research

In contemporary education, mathematics education—known in Europe as the didactics or pedagogy of mathematics—is the practice of teaching, learning, and carrying out scholarly research into the transfer of mathematical knowledge.

Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous. In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such as integers, graphs, and statements in logic – do not vary smoothly in this way, but have distinct, separated values. Discrete mathematics, therefore, excludes topics in "continuous mathematics" such as calculus and analysis.

<span class="mw-page-title-main">Precalculus</span> Course designed to prepare students for calculus

In mathematics education, precalculus is a course, or a set of courses, that includes algebra and trigonometry at a level which is designed to prepare students for the study of calculus, thus the name precalculus. Schools often distinguish between algebra and trigonometry as two separate parts of the coursework.

Principles and Standards for School Mathematics (PSSM) are guidelines produced by the National Council of Teachers of Mathematics (NCTM) in 2000, setting forth recommendations for mathematics educators. They form a national vision for preschool through twelfth grade mathematics education in the US and Canada. It is the primary model for standards-based mathematics.

Many letters of the Latin alphabet, both capital and small, are used in mathematics, science, and engineering to denote by convention specific or abstracted constants, variables of a certain type, units, multipliers, or physical entities. Certain letters, when combined with special formatting, take on special meaning.

Mathematics education in New York in regard to both content and teaching method can vary depending on the type of school a person attends. Private school math education varies between schools whereas New York has statewide public school requirements where standardized tests are used to determine if the teaching method and educator are effective in transmitting content to the students. While an individual private school can choose the content and educational method to use, New York State mandates content and methods statewide. Some public schools have and continue to use established methods, such as Montessori for teaching such required content. New York State has used various foci of content and methods of teaching math including New Math (1960s), 'back to the basics' (1970s), Whole Math (1990s), Integrated Math, and Everyday Mathematics.

The history of mathematical notation includes the commencement, progress, and cultural diffusion of mathematical symbols and the conflict of the methods of notation confronted in a notation's move to popularity or inconspicuousness. Mathematical notation comprises the symbols used to write mathematical equations and formulas. Notation generally implies a set of well-defined representations of quantities and symbols operators. The history includes Hindu–Arabic numerals, letters from the Roman, Greek, Hebrew, and German alphabets, and a host of symbols invented by mathematicians over the past several centuries.

Algebra can essentially be considered as doing computations similar to those of arithmetic but with non-numerical mathematical objects. However, until the 19th century, algebra consisted essentially of the theory of equations. For example, the fundamental theorem of algebra belongs to the theory of equations and is not, nowadays, considered as belonging to algebra.

Algebra is the branch of mathematics that studies algebraic structures and the manipulation of statements within those structures. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations like addition and multiplication.

A timeline of numerals and arithmetic.

<span class="mw-page-title-main">Mathematics education in the United States</span> Overview of mathematics education in the United States

Mathematics education in the United States varies considerably from one state to the next, and even within a single state. However, with the adoption of the Common Core Standards in most states and the District of Columbia beginning in 2010, mathematics content across the country has moved into closer agreement for each grade level. The SAT, a standardized university entrance exam, has been reformed to better reflect the contents of the Common Core. However, many students take alternatives to the traditional pathways, including accelerated tracks. As of 2023, twenty-seven states require students to pass three math courses before graduation from high school, while seventeen states and the District of Columbia require four. A typical sequence of secondary-school courses in mathematics reads: Pre-Algebra, Algebra I, Geometry, Algebra II, Pre-calculus, and Calculus or Statistics. However, some students enroll in integrated programs while many complete high school without passing Calculus or Statistics. At the other end, counselors at competitive public or private high schools usually encourage talented and ambitious students to take Calculus regardless of future plans in order to increase their chances of getting admitted to a prestigious university and their parents enroll them in enrichment programs in mathematics.

Mathematics is a field of study that investigates topics such as number, space, structure, and change.

<span class="mw-page-title-main">Sixth power</span>

In arithmetic and algebra the sixth power of a number n is the result of multiplying six instances of n together. So:

References

  1. In the Introduction to their book on prealgebra.Szczepanski & Kositsky (2008) say that "the math in this book should match what's taught in many middle school classrooms in California, Florida, New York, Texas, and other states." (p. xix)
  2. "A Leak in the STEM Pipeline: Taking Algebra Early". U.S. Department of Education. November 2018. Retrieved May 13, 2023.
  3. Linchevski, Liora (1995). "Algebra With Numbers and Arithmetic With Letters: A Definition of Prealgebra". Journal of Mathematical Behavior. 14: 113–120. doi:10.1016/0732-3123(95)90026-8.
  4. "Gifted and Talented Honors Prealgebra | Johns Hopkins Center for Talented Youth". cty.jhu.edu. Retrieved 2021-02-10.
  5. Gningue, Serigne Mbaye; Menil, Violeta C.; Fuchs, Eric (June 1, 2014). "Applying Bruner's Theory of Representation to Teach Pre-Algebra and Algebra Concepts to Community College Students Using Virtual Manipulatives". The Electronic Journal of Mathematics and Technology. 8. ISSN   1933-2823.