Binomial approximation

Last updated


The binomial approximation is useful for approximately calculating powers of sums of 1 and a small number x. It states that

Contents

It is valid when and where and may be real or complex numbers.

The benefit of this approximation is that is converted from an exponent to a multiplicative factor. This can greatly simplify mathematical expressions (as in the example below) and is a common tool in physics. [1]

The approximation can be proven several ways, and is closely related to the binomial theorem. By Bernoulli's inequality, the left-hand side of the approximation is greater than or equal to the right-hand side whenever and .

Derivations

Using linear approximation

The function

is a smooth function for x near 0. Thus, standard linear approximation tools from calculus apply: one has

and so

Thus

By Taylor's theorem, the error in this approximation is equal to for some value of that lies between 0 and x. For example, if and , the error is at most . In little o notation, one can say that the error is , meaning that .

Using Taylor series

The function

where and may be real or complex can be expressed as a Taylor series about the point zero.

If and , then the terms in the series become progressively smaller and it can be truncated to

This result from the binomial approximation can always be improved by keeping additional terms from the Taylor series above. This is especially important when starts to approach one, or when evaluating a more complex expression where the first two terms in the Taylor series cancel (see example).

Sometimes it is wrongly claimed that is a sufficient condition for the binomial approximation. A simple counterexample is to let and . In this case but the binomial approximation yields . For small but large , a better approximation is:

Example

The binomial approximation for the square root, , can be applied for the following expression,

where and are real but .

The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.

Evidently the expression is linear in when which is otherwise not obvious from the original expression.

Generalization

While the binomial approximation is linear, it can be generalized to keep the quadratic term in the Taylor series:

Applied to the square root, it results in:

Quadratic example

Consider the expression:

where and . If only the linear term from the binomial approximation is kept then the expression unhelpfully simplifies to zero

While the expression is small, it is not exactly zero. So now, keeping the quadratic term:

This result is quadratic in which is why it did not appear when only the linear terms in were kept.

Related Research Articles

<span class="mw-page-title-main">Binomial distribution</span> Probability distribution

In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success or failure. A single success/failure experiment is also called a Bernoulli trial or Bernoulli experiment, and a sequence of outcomes is called a Bernoulli process; for a single trial, i.e., n = 1, the binomial distribution is a Bernoulli distribution. The binomial distribution is the basis for the popular binomial test of statistical significance.

<span class="mw-page-title-main">Binomial coefficient</span> Number of subsets of a given size

In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers nk ≥ 0 and is written It is the coefficient of the xk term in the polynomial expansion of the binomial power (1 + x)n; this coefficient can be computed by the multiplicative formula

<span class="mw-page-title-main">Bessel function</span> Families of solutions to related differential equations

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation

<span class="mw-page-title-main">Normal distribution</span> Probability distribution

In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is

In probability theory, the central limit theorem (CLT) establishes that, in many situations, for identically distributed independent samples, the standardized sample mean tends towards the standard normal distribution even if the original variables themselves are not normally distributed.

<span class="mw-page-title-main">Taylor's theorem</span> Approximation of a function by a truncated power series

In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation at the order of the Taylor series of the function. The first-order Taylor polynomial is the linear approximation of the function, and the second-order Taylor polynomial is often referred to as the quadratic approximation. There are several versions of Taylor's theorem, some giving explicit estimates of the approximation error of the function by its Taylor polynomial.

<span class="mw-page-title-main">Fermi gas</span> Physical model of gases composed of many non-interacting identical fermions

An ideal Fermi gas is a state of matter which is an ensemble of many non-interacting fermions. Fermions are particles that obey Fermi–Dirac statistics, like electrons, protons, and neutrons, and, in general, particles with half-integer spin. These statistics determine the energy distribution of fermions in a Fermi gas in thermal equilibrium, and is characterized by their number density, temperature, and the set of available energy states. The model is named after the Italian physicist Enrico Fermi.

In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller than any relevant dimension of the body; so that its geometry and the constitutive properties of the material at each point of space can be assumed to be unchanged by the deformation.

<span class="mw-page-title-main">Gamma distribution</span> Probability distribution

In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use:

  1. With a shape parameter and a scale parameter .
  2. With a shape parameter and an inverse scale parameter , called a rate parameter.
<span class="mw-page-title-main">Diophantine approximation</span> Rational-number approximation of a real number

In number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria.

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

<span class="mw-page-title-main">Linear approximation</span> Approximation of a function by its tangent line at a point

In mathematics, a linear approximation is an approximation of a general function using a linear function. They are widely used in the method of finite differences to produce first order methods for solving or approximating solutions to equations.

In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another, except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value. A tensor density with a single index is called a vector density. A distinction is made among (authentic) tensor densities, pseudotensor densities, even tensor densities and odd tensor densities. Sometimes tensor densities with a negative weight W are called tensor capacity. A tensor density can also be regarded as a section of the tensor product of a tensor bundle with a density bundle.

<span class="mw-page-title-main">Simple linear regression</span> Linear regression model with a single explanatory variable

In statistics, simple linear regression is a linear regression model with a single explanatory variable. That is, it concerns two-dimensional sample points with one independent variable and one dependent variable and finds a linear function that, as accurately as possible, predicts the dependent variable values as a function of the independent variable. The adjective simple refers to the fact that the outcome variable is related to a single predictor.

In statistics, a binomial proportion confidence interval is a confidence interval for the probability of success calculated from the outcome of a series of success–failure experiments. In other words, a binomial proportion confidence interval is an interval estimate of a success probability p when only the number of experiments n and the number of successes nS are known.

<span class="mw-page-title-main">Maxwell's equations in curved spacetime</span> Electromagnetism in general relativity

In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.

<span class="mw-page-title-main">Pendulum (mechanics)</span> Free swinging suspended body

A pendulum is a body suspended from a fixed support so that it swings freely back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging it back and forth. The mathematics of pendulums are in general quite complicated. Simplifying assumptions can be made, which in the case of a simple pendulum allow the equations of motion to be solved analytically for small-angle oscillations.

In mathematical physics, the Wu–Sprung potential, named after Hua Wu and Donald Sprung, is a potential function in one dimension inside a Hamiltonian with the potential defined by solving a non-linear integral equation defined by the Bohr–Sommerfeld quantization conditions involving the spectral staircase, the energies and the potential .

HyperLogLog is an algorithm for the count-distinct problem, approximating the number of distinct elements in a multiset. Calculating the exact cardinality of the distinct elements of a multiset requires an amount of memory proportional to the cardinality, which is impractical for very large data sets. Probabilistic cardinality estimators, such as the HyperLogLog algorithm, use significantly less memory than this, but can only approximate the cardinality. The HyperLogLog algorithm is able to estimate cardinalities of > 109 with a typical accuracy (standard error) of 2%, using 1.5 kB of memory. HyperLogLog is an extension of the earlier LogLog algorithm, itself deriving from the 1984 Flajolet–Martin algorithm.

In condensed matter physics and physical chemistry, the Lifshitz theory of van der Waals forces, sometimes called the macroscopic theory of van der Waals forces, is a method proposed by Evgeny Mikhailovich Lifshitz in 1954 for treating van der Waals forces between bodies which does not assume pairwise additivity of the individual intermolecular forces; that is to say, the theory takes into account the influence of neighboring molecules on the interaction between every pair of molecules located in the two bodies, rather than treating each pair independently.

References

  1. For example calculating the multipole expansion. Griffiths, D. (1999). Introduction to Electrodynamics (Third ed.). Pearson Education, Inc. pp. 146–148.