DEC 7000 AXP and DEC 10000 AXP

Last updated

The DEC 7000 AXP and DEC 10000 AXP are a series of high-end multiprocessor server computers developed and manufactured by Digital Equipment Corporation, introduced on 10 November 1992 (although the DEC 10000 AXP was not available until the following year). These systems formed part of the first generation of systems based on the 64-bit Alpha AXP architecture and at the time of introduction, ran Digital's OpenVMS AXP operating system, with DEC OSF/1 AXP available in March 1993. They were designed in parallel with the VAX 7000 and VAX 10000 minicomputers, and are identical except for the processor module(s) and supported bus interfaces. A field upgrade from a VAX 7000/10000 to a DEC 7000/10000 AXP was possible by means of swapping the processor boards.

Contents

The DEC 7000/10000 AXP were intended to supersede the VAX 6000 series, and themselves were succeeded in 1995 by the AlphaServer 8200 and 8400 (TurboLaser) enterprise servers.

Models

The DEC 7000 AXP was positioned as a data center system, whereas the DEC 10000 AXP was positioned as a "mainframe" system. From a hardware point of view, the DEC 10000 AXP was essentially a larger configuration of the DEC 7000 AXP. Both shared the same System Cabinet, but the DEC 10000 AXP was configured as standard with one Expander Cabinet housing storage devices, and one Battery Cabinet housing an uninterruptible power supply. These were optional for a DEC 7000 AXP system.

There are two models of the DEC 7000 AXP:

There was one model of the DEC 10000 AXP:

The possible values of 'x' is 1 to 6. These numbers specify the number of microprocessors in the system.

Cabinets

The DEC 7000/10000 AXP system is housed in the system cabinet. The upper part of the cabinet contains the LSB card cage on the left and the control panel and power subsystem on the right. Below is the cooling system, which occupies the middle of the cabinet. It consists of a single blower that draws air from the top and bottom of the cabinet, expelling it through vents in the middle. Under the blower are four plug-in unit (PIU) quadrants for PIUs, enclosures which house options.

The expander cabinet houses additional PIUs. It is identical to the system cabinet except that the LSB card cage is replaced by two additional PIU quadrants, identified as 5 and 6. Up to none, one or two expander cabinets are supported by the DEC 7000/10000 AXP systems. The expander cabinets are placed against the sides of the system cabinet, with the first placed to the left and the second to the right.

The DEC 10000 AXP may utilize an additional type of cabinet, the battery cabinet, of which up to two may be installed against the sides of the expander cabinet(s), with the first to the left and the second to the right. These cabinets are different than the other cabinets in every respect, they are narrower physically and only provide space for two PIUs, one above the other. These PIUs are used only for additional battery PIUs to prolong the continued operation of the system in the event of the power failure in comparison to a system using only battery PIUs housed in the system or expander cabinets.

Hardware description

The DEC 7000/10000 AXP are six-way symmetric multiprocessing capable systems based on nine nodes that are interconnected by the 128-bit Laser System Bus (LSB). The bus operates at 50 MHz and is pipelined, yielding a maximum bandwidth of 800 MB/s and a usable bandwidth of 640 MB/s. Eight of the nine nodes can be populated by a combination of CPU and memory modules, as long as the number of CPU modules is one to six, and one to seven for memory modules. The inclusion of an I/O module at node nine is mandatory and the slot for the module was physically incompatible with other modules to ensure this.

The modules are printed circuit boards contained within an enclosure that plug into nine slots located on a centerplane, which contains the LSB bus. The front side of centerplane, from left to right, has four slots for nodes zero to three and a Power Filter module, while the rear side, from left to right, has five slots for nodes four to eight. Slot eight is reserved for the I/O module. The modules and centerplane are housed in the LSB card cage. The centerplane is 350 mm wide by 500 mm high. The modules are 410 mm high and 340 mm deep.

CPU module

The Model 600 systems used the KN7AA CPU module, which contained either a 182 MHz DECchip 21064 (EV4) or 200 MHz DECchip 21064 (EV4S) microprocessor. The 182 MHz version was only used in DEC 7000 AXP, with the 200 MHz version used in the DEC 10000 AXP at first, and later in the DEC 7000 AXP. The Model 700 systems used the KN7AB CPU module containing a 275 MHz DECchip 21064A (EV45).

Other than the differences in the microprocessor used and their clock frequencies, all CPU modules also featured 4 MB of B-cache (L2 cache) and two LEVI gate arrays for interfacing the module to the LSB bus. The B-cache size of 4 MB was chosen as it was the largest size achievable with 4-bit SRAMs containing 262,144 words (128 KB) on a 128-bit system bus. The B-cache SRAMs and drivers reside on both sides of the CPU module.

The LEVI also implement the Gbus, an 8-bit bus to which hardware providing console functionality is connected to. Devices connected to the Gbus are a set of seven 128 KB (8-bit by 131,072-word) flash ROMs for storing the console program, an 8 KB (8-bit by 8,192-entry) EEPROM for storing miscellaneous parameter and log information, three devices containing two UARTs each for implementing six serial lines and a watch chip containing a time-of-year clock, 50 bytes of battery-backed-up RAM and a lithium battery rated to last for 10 years.

Memory modules

The DEC 7000 AXP and DEC 10000 AXP supported two types of memory module, the MS7AA and the MS7BB, which differ in function. The MS7AA provided dynamic random access memory (DRAM) for implementing the main memory, whereas the MS7BB provided a non-volatile cache for accelerating Network File System (NFS) performance when used in conjunction with Prestoserve software from Legato Systems.

MS7AA

The MS7AA memory module has capacities of 64 MB, 128 MB, 256 MB, 512 MB and 2 GB. The module and its components are clocked at 50 MHz. The MIC (Memory Interface Controller), provides the interface to the LSB bus, and is made up of two gate arrays, MIC-A and MIC-B. The two gate arrays both provide a 64-bit data path, which when combined results in a 128-bit data path that matches the width of the LSB bus. The two gate arrays, while similar, are not identical. MIC-A also serves as the memory controller, interfaces to the LSB bus' control lines and coordinates the operation of MIC-B, which provides the module with SECDED ECC capability.

Also on the module are 18 MDC (Memory Data Controller) chips. The purpose of the MDCs is to act as a buffer between the 512-bit memory bus and the 128-bit LSB bus. During memory read operations, the MDCs buffer a 512-bit transaction from the memory and forwards it to the MIC in four 128-bit transactions over four 20 nanosecond cycles. Memory write operations are similar, but with the roles reversed. The MDCs instead accumulate four 128-bit transactions from the MIC over four 20 nanosecond cycles before writing to the memory in one 512-bit transaction.

The memory is implemented with 512 KB or 2 MB DRAM chips and organised into one to eight "strings", the smallest group of DRAMs required to fill the width of a 64-byte LSB bus transaction. Each string consists of 144 DRAM chips. Depending on the module's capacity, the DRAM chips are either surface mounted on both sides of the board or mounted on SIMMs that are soldered onto the board. The SIMMs are not socketed as Digital's engineers found the arrangement to be unreliable.

The modules and the memory subsystem of the DEC 7000/1000 supports interleaving. Modules with more than two strings supports two-way interleaving. At a system level, the memory subsystem supports a maximum of eight-way interleaving. If the configuration results in more levels of interleaving than the memory subsystem can support, multiple memory modules are then grouped into larger banks so the level of interleaving in the memory subsystem does not exceed the maximum of eight ways.

MS7BB

The MS7BB memory module was a NFS accelerator. It contained 16 MB of non-volatile memory used to cache writes to the file system. The non-volatile memory was built from SRAM, and in event of power failure, a battery pack containing 14 batteries located on the module would power the SRAM for up to 48 hours, retaining the data.

I/O port module

The I/O port module provides the means to implement I/O buses. It contains four parallel ports (not to be confused with the parallel ports found in personal computers) that connect to adapters, which implement an expansion bus, in the plug-in units (PIUs) housed in the system cabinet or expander cabinet via cables that are up to three meters long. An I/O controller gate array on the module interfaces the parallel ports to the LSB bus by serving as a bridge, receiving a transaction from a bus and passing it on to another. The I/O controller has 256 MB/s of bandwidth that the four parallel ports share. Each parallel port, if sending data from the memory to the I/O subsystem, has a maximum bandwidth of 88 MB/s. If the parallel port is sending data from the I/O subsystem to the memory, it has a maximum bandwidth of 135 MB/s.

Plug-in units

Plug-in units (PIUs) are modular enclosures that house options. The DEC 7000/10000 AXP supported PIUs implementing the Futurebus+ Profile B and XMI, PIUs housing SCSI and DSSI drives, and a PIU housing batteries.

Futurebus expansion capability was provided by the DWLAA PIU. It contains a card cage with nine usable slots and the DWLAA adapter, which implements the bus and interfaces it to the I/O controller on the I/O port module. The Futurebus PIU can be installed in PIU quadrants 2 and 4 and. Futurebus capability was optional and up to three can be installed in a system, with a maximum of two per cabinet. Futurebus capability required the system to have a XMI bus.

XMI expansion capability was provided by the DWLMA PIU. It contains a card cage with 14 slots, with 12 of those slots usable by adapters. Two slots are unusable as they are reserved by the control and interface modules, the DWLMA module, which implements the XMI bus and interfaces it to the I/O controller on the I/O port module, and clock and arbitration module, which provides the XMI clock. The XMI PIU requires two PIU quadrants as they are twice as deep as the other PIUs, and can be installed only in the bottom left or right PIU quadrants. One to four XMI PIUs are supported in a system, with a maximum of two per any type of cabinet.

SCSI devices are housed in the BA655 PIU, which contains two modular expansion shelves placed side by side. The left shelf can house seven 3.5-inch (89 mm) drives and the right shelf can house two 5.25-inch (133 mm) drives. The system cabinet can have up to two SCSI PIUs and expander cabinet up to four. DSSI devices are housed in the BA654 PIU which contains three Storage Array Building Blocks (SBBs), each housing two 5.25-inch (133 mm) drives. The system cabinet can have up to two DSSI PIUs and the expander cabinet up to six.

The SCSI and DSSI PIUs did not contain hardware that provides the SCSI or DSSI bus to which the drives connect to. Instead, they are connected to a KZMSA-AB adapter for SCSI, or a KFMSB adapter for DSSI, which is installed in the XMI PIU. The KZMSA-AB adapter provides two 8-bit single-ended SCSI-2 buses (or differential 8-bit SCSI-2 buses if DWZZA bus converters are used) that support seven drives each, while the KFMSB adapter provides two DSSI buses. Unlike the Futurebus and XMI PIUs, the SCSI and DSSI PIUs can be installed in any PIU quadrant.

Rackmount model

A rackmount model of the DEC 7000 AXP also existed. A system consisted of one BA700-AA Laser System Bus Chassis and one to four BA601-AC Extended Memory Interconnect Chassis mounted in a 19-inch rack. The BA700-AA housed the LSB card cage, which contained five slots for one to three CPU modules, one or two memory modules and an I/O port module.

Related Research Articles

<span class="mw-page-title-main">DEC Alpha</span> 64-bit RISC instruction set architecture

Alpha is a 64-bit reduced instruction set computer (RISC) instruction set architecture (ISA) developed by Digital Equipment Corporation (DEC). Alpha was designed to replace 32-bit VAX complex instruction set computers (CISC) and to be a highly competitive RISC processor for Unix workstations and similar markets.

<span class="mw-page-title-main">SGI Indigo² and Challenge M</span> Workstation computers

The SGI Indigo2 and the SGI Challenge M are Unix workstations which were designed and sold by SGI from 1992 to 1997.

<span class="mw-page-title-main">DECstation</span> DEC brand of computers

The DECstation was a brand of computers used by DEC, and refers to three distinct lines of computer systems—the first released in 1978 as a word processing system, and the latter two both released in 1989. These comprised a range of computer workstations based on the MIPS architecture and a range of PC compatibles. The MIPS-based workstations ran ULTRIX, a DEC-proprietary version of UNIX, and early releases of OSF/1.

<span class="mw-page-title-main">SGI Octane</span> Computer series

Octane series of IRIX workstations was developed and sold by SGI in the 2000s. Octane and Octane2 are two-way multiprocessing-capable workstations, originally based on the MIPS Technologies R10000 microprocessor. Newer Octanes are based on the R12000 and R14000. The Octane2 has four improvements: a revised power supply, system board, and Xbow ASIC. The Octane2 has VPro graphics and supports all the VPro cards. Later revisions of the Octane include some of the improvements introduced in the Octane2. The codenames for the Octane and Octane2 are "Racer" and "Speedracer" respectively.

<span class="mw-page-title-main">SGI O2</span> Unix workstation from Silicon Graphics

The O2 was an entry-level Unix workstation introduced in 1996 by Silicon Graphics, Inc. (SGI) to replace their earlier Indy series. Like the Indy, the O2 used a single MIPS microprocessor and was intended to be used mainly for multimedia. Its larger counterpart was the SGI Octane. The O2 was SGI's last attempt at a low-end workstation.

The Multia, later re-branded the Universal Desktop Box, was a line of desktop computers introduced by Digital Equipment Corporation on 7 November 1994. The line is notable in that units were offered with either an Alpha AXP or Intel Pentium processor as the CPU, and most hardware other than the backplane and CPU were interchangeable. Both the Alpha and Intel versions were intended to run Windows NT.

<span class="mw-page-title-main">VAXstation</span>

The VAXstation is a discontinued family of workstation computers developed and manufactured by Digital Equipment Corporation using processors implementing the VAX instruction set architecture. VAXstation systems were typically shipped with either the OpenVMS or ULTRIX operating systems. Many members of the VAXstation family had corresponding MicroVAX variants, which primarily differ by the lack of graphics hardware.

DECsystem was a line of server computers from Digital Equipment Corporation. They were based on MIPS architecture processors and ran DEC's version of the UNIX operating system, called ULTRIX. They ranged in size from workstation-style desktop enclosures to large pedestal cabinets.

<span class="mw-page-title-main">NVAX</span>

The NVAX is a CMOS microprocessor developed and produced by Digital Equipment Corporation (DEC) that implemented the VAX instruction set architecture (ISA). A variant of the NVAX, the NVAX+, differed in the bus interface and external cache supported, but was otherwise identical in regards to microarchitecture. The NVAX+ was designed to have the same bus as the DECchip 21064, allowing drop-in replacement.

<span class="mw-page-title-main">DEC 3000 AXP</span>

DEC 3000 AXP was the name given to a series of computer workstations and servers, produced from 1992 to around 1995 by Digital Equipment Corporation. The DEC 3000 AXP series formed part of the first generation of computer systems based on the 64-bit Alpha AXP architecture. Supported operating systems for the DEC 3000 AXP series were DEC OSF/1 AXP and OpenVMS AXP.

The DECpc AXP 150, code-named Jensen, is an entry-level workstation developed and manufactured by Digital Equipment Corporation. Introduced on 25 May 1993, the DECpc AXP 150 was the first Alpha-based system to support the Windows NT operating system and the basis for the DEC 2000 AXP entry-level servers. It was discontinued on 28 February 1994, succeeded by the entry-level Multia and the entry-level and mid-range models of the AlphaStation family. The charter for the development and production of the DEC 2000 AXP was held by Digital's Entry Level Solutions Business, based in Ayr, Scotland.

The DEC 4000 AXP is a series of departmental server computers developed and manufactured by Digital Equipment Corporation introduced on 10 November 1992. These systems formed part of the first generation of systems based on the 64-bit Alpha AXP architecture and at the time of introduction, ran Digital's OpenVMS AXP or OSF/1 AXP operating systems.

<span class="mw-page-title-main">SGI Origin 2000</span> Series of server computers

The SGI Origin 2000 is a family of mid-range and high-end server computers developed and manufactured by Silicon Graphics (SGI). They were introduced in 1996 to succeed the SGI Challenge and POWER Challenge. At the time of introduction, these ran the IRIX operating system, originally version 6.4 and later, 6.5. A variant of the Origin 2000 with graphics capability is known as the Onyx2. An entry-level variant based on the same architecture but with a different hardware implementation is known as the Origin 200. The Origin 2000 was succeeded by the Origin 3000 in July 2000, and was discontinued on June 30, 2002.

<span class="mw-page-title-main">SGI Origin 200</span> Entry-level server by Silicon Graphics

The SGI Origin 200, code named Speedo, was an entry-level server computer developed and manufactured by SGI, introduced in October 1996 to accompany their mid-range and high-end Origin 2000. It is based on the same architecture as the Origin 2000 but has an unrelated hardware implementation. At the time of introduction, these systems ran the IRIX 6.4, and later, the IRIX 6.5 operating systems. The Origin 200 was discontinued on 30 June 2002.

The VAX 4000 is a discontinued family of low-end minicomputers developed and manufactured by Digital Equipment Corporation using microprocessors implementing the VAX instruction set architecture (ISA). The VAX 4000 succeeded the MicroVAX family, and shipped with the OpenVMS operating system. It was the last family of low-end VAX systems, as the platform was discontinued by Compaq.

<span class="mw-page-title-main">VAX 6000</span>

The VAX 6000 is a discontinued family of minicomputers developed and manufactured by Digital Equipment Corporation (DEC) using processors implementing the VAX instruction set architecture (ISA). Originally, the VAX 6000 was intended to be a mid-range VAX product line complementing the VAX 8000, but with the introduction of the VAX 6000 Model 400 series, the older VAX 8000 was discontinued in favor of the VAX 6000, which offered slightly higher performance for half the cost. The VAX 6000 family supports Digital's VMS and ULTRIX operating systems.

The VAX 7000 and VAX 10000 are a discontinued family of high-end multiprocessor minicomputers developed and manufactured by Digital Equipment Corporation (DEC), introduced in July 1992. These systems use NVAX microprocessors implementing the VAX instruction set architecture, and run the OpenVMS operating system.

<span class="mw-page-title-main">VAX 8000</span> Discontinued family of superminicomputers

The VAX 8000 is a discontinued family of superminicomputers developed and manufactured by Digital Equipment Corporation (DEC) using processors implementing the VAX instruction set architecture (ISA).

<span class="mw-page-title-main">Alpha 21064</span>

The Alpha 21064 is a microprocessor developed and fabricated by Digital Equipment Corporation that implemented the Alpha instruction set architecture (ISA). It was introduced as the DECchip 21064 before it was renamed in 1994. The 21064 is also known by its code name, EV4. It was announced in February 1992 with volume availability in September 1992. The 21064 was the first commercial implementation of the Alpha ISA, and the first microprocessor from Digital to be available commercially. It was succeeded by a derivative, the Alpha 21064A in October 1993.

The Digital Storage Systems Interconnect (DSSI) is a computer bus developed by Digital Equipment Corporation for connecting storage devices and clustering VAX systems. It was designed as a smaller and lower-cost replacement for the earlier DEC Computer Interconnect that would be more suitable for use in office environments. DSSI was superseded by Parallel SCSI.

References