The T-11, also known as DC310 or DCT11, is a microprocessor that implements the PDP-11 instruction set architecture (ISA) developed by Digital Equipment Corporation. The T-11 was code-named "Tiny". It was developed for embedded systems and was the first single-chip microprocessor developed by DEC. Going into volume production in early 1982, [1] it was sold openly and was used by DEC in disk controllers (Eg: M8639 RQDX2 controller), the VT240 terminal, auxiliary processors and in the Atari System 2 arcade game system. It operated at 7.5 MHz or 10 MHz (three versions, two speeds), used a 5 V power supply and dissipated 1.1 W maximum. It contained 13,000 transistors, used NMOS logic, and was fabricated in a NMOS process. By 1987, three versions of the DCT11 were available: 21-17311-01 (original 7.5 MHz version, produced by DEC), 21-17311-00 (second source, 7.5 MHz, from Synertek), and 21-17311-02 (10 MHz version, produced by DEC). [2]
A clone of the T-11 was manufactured in the Soviet Union under the designation KR1807VM1 (Russian : КР1807ВМ1). [3]
The Intel 8080 ("eighty-eighty") is the second 8-bit microprocessor designed and manufactured by Intel. It first appeared in April 1974 and is an extended and enhanced variant of the earlier 8008 design, although without binary compatibility. The initial specified clock rate or frequency limit was 2 MHz, with common instructions using 4, 5, 7, 10, or 11 clock cycles. As a result, the processor is able to execute several hundred thousand instructions per second. Two faster variants, the 8080A-1 and 8080A-2, became available later with clock frequency limits of 3.125 MHz and 2.63 MHz respectively. The 8080 needs two support chips to function in most applications: the i8224 clock generator/driver and the i8228 bus controller. The 8080 is implemented in N-type metal–oxide–semiconductor logic (NMOS) using non-saturated enhancement mode transistors as loads thus demanding a +12 V and a −5 V voltage in addition to the main transistor–transistor logic (TTL) compatible +5 V.
The 6800 is an 8-bit microprocessor designed and first manufactured by Motorola in 1974. The MC6800 microprocessor was part of the M6800 Microcomputer System that also included serial and parallel interface ICs, RAM, ROM and other support chips. A significant design feature was that the M6800 family of ICs required only a single five-volt power supply at a time when most other microprocessors required three voltages. The M6800 Microcomputer System was announced in March 1974 and was in full production by the end of that year.
The StrongARM is a family of computer microprocessors developed by Digital Equipment Corporation and manufactured in the late 1990s which implemented the ARM v4 instruction set architecture. It was later acquired by Intel in 1997 from DEC's own Digital Semiconductor division as part of a settlement of a lawsuit between the two companies over patent infringement. Intel then continued to manufacture it before replacing it with the StrongARM-derived ARM-based follow-up architecture called XScale in the early 2000s.
In integrated circuits, depletion-load NMOS is a form of digital logic family that uses only a single power supply voltage, unlike earlier NMOS logic families that needed more than one different power supply voltage. Although manufacturing these integrated circuits required additional processing steps, improved switching speed and the elimination of the extra power supply made this logic family the preferred choice for many microprocessors and other logic elements.
The CVAX is a microprocessor chipset developed and fabricated by Digital Equipment Corporation (DEC) that implemented the VAX instruction set architecture (ISA). The chipset consisted of the CVAX 78034 CPU, CFPA floating-point accelerator, CVAX clock chip, and the associated support chips, the CVAX System Support Chip (CSSC), CVAX Memory Controller (CMCTL), and CVAX Q-Bus Interface Chip (CQBIC).
The R3000 is a 32-bit RISC microprocessor chipset developed by MIPS Computer Systems that implemented the MIPS I instruction set architecture (ISA). Introduced in June 1988, it was the second MIPS implementation, succeeding the R2000 as the flagship MIPS microprocessor. It operated at 20, 25 and 33.33 MHz.
PMOS or pMOS logic is a family of digital circuits based on p-channel, enhancement mode metal–oxide–semiconductor field-effect transistors (MOSFETs). In the late 1960s and early 1970s, PMOS logic was the dominant semiconductor technology for large-scale integrated circuits before being superseded by NMOS and CMOS devices.
The V-11, code-named "Scorpio", is a miniprocessor chip set implementation of the VAX instruction set architecture (ISA) developed and fabricated by Digital Equipment Corporation (DEC).
The VAX 8000 is a discontinued family of superminicomputers developed and manufactured by Digital Equipment Corporation (DEC) using processors implementing the VAX instruction set architecture (ISA).
The Alpha 21064 is a microprocessor developed and fabricated by Digital Equipment Corporation that implemented the Alpha instruction set architecture (ISA). It was introduced as the DECchip 21064 before it was renamed in 1994. The 21064 is also known by its code name, EV4. It was announced in February 1992 with volume availability in September 1992. The 21064 was the first commercial implementation of the Alpha ISA, and the first microprocessor from Digital to be available commercially. It was succeeded by a derivative, the Alpha 21064A in October 1993. This last version was replaced by the Alpha 21164 in 1995.
The Alpha 21164, also known by its code name, EV5, is a microprocessor developed and fabricated by Digital Equipment Corporation that implemented the Alpha instruction set architecture (ISA). It was introduced in January 1995, succeeding the Alpha 21064A as Digital's flagship microprocessor. It was succeeded by the Alpha 21264 in 1998.
The Alpha 21264 is a RISC microprocessor developed by Digital Equipment Corporation launched on 19 October 1998. The 21264 implemented the Alpha instruction set architecture (ISA).
The MicroVAX 78032 is a microprocessor developed and fabricated by Digital Equipment Corporation (DEC) that implements a subset of the VAX instruction set architecture (ISA). The 78032 is used exclusively in DEC's VAX-based systems, starting with the MicroVAX II in 1985. When clocked at a frequency of 5 MHz, the 78032's integer performance is comparable to the original VAX-11/780 of 1977. The microprocessor can be paired with the MicroVAX 78132 floating point accelerator for improved floating point performance.
Rigel was a microprocessor chip set developed and fabricated by Digital Equipment Corporation (DEC) that implemented the VAX instruction set architecture (ISA). It was introduced on 11 July 1989 with the introduction of the VAX 6000 Model 400, the first system to feature the chip set. Rigel was also used in the VAX 4000 Model 300 and VAXstation 3100 Model 76. Production Rigel CPUs were rated at 35 to 43 MHz.
The 1801 series CPUs were a family of 16-bit Soviet microprocessors based on the indigenous Elektronika NC microarchitecture cores, but binary compatible with DEC's PDP-11 machines. First released in 1980, various models and variants of the series were among the most popular Soviet microprocessors and dominated embedded systems and military applications of the 1980s. They were also used in widely different areas such as graphing calculators and industrial CNCs, but arguably their most well-known use was in several Soviet general-purpose mini- and microcomputer designs like the SM EVM, DVK, UKNC, and BK families. Due to being the CPU of the popular Elektronika BK home computer, used in its late years as a demo machine, as well as the DVK micros that often offered a first glimpse into the UNIX world, this processor achieved something of a cult status among Soviet and then Russian programmers, and to a lesser extent, international programmers.
The R2000 is a 32-bit microprocessor chip set developed by MIPS Computer Systems that implemented the MIPS I instruction set architecture (ISA). Introduced in January 1986, it was, by a few months, the first commercial implementation of the RISC architecture. The R2000 competed with Digital Equipment Corporation (DEC) VAX minicomputers and with Motorola 68000 and Intel Corporation 80386 microprocessors. R2000 users included Ardent Computer, DEC, Silicon Graphics, Northern Telecom and MIPS's own Unix workstations.
The IXP1200 is a network processor fabricated by Intel Corporation. The processor was originally a Digital Equipment Corporation (DEC) project that had been in development since late 1996. When parts of DEC's Digital Semiconductor business was acquired by Intel in 1998 as part of an out-of-court settlement to end lawsuits each company had launched at each other for patent infringement, the processor was transferred to Intel. The DEC design team was retained and the design was completed by them under Intel. Samples of the processor were available for Intel partners since 1999, with general sample availability in late 1999. The processor was introduced in early 2000 at 166 and 200 MHz. A 232 MHz version was introduced later. The processor was later succeeded by the IXP2000, an XScale-based family developed entirely by Intel.
The J-11 is a microprocessor chip set that implements the PDP-11 instruction set architecture (ISA) jointly developed by Digital Equipment Corporation and Intersil. It was a high-end chip set designed to integrate the performance and features of the PDP-11/70 onto a handful of chips. It was used in the PDP-11/73, PDP-11/83 and Professional 380.
The U80701 is a 32-bit microprocessor developed from 1986-1990 in the German Democratic Republic. It was manufactured by VEB Mikroelektronik "Karl Marx" Erfurt (MME) in NMOS technology and is encased in a ceramic quad flat package.
К1839 is a microprocessor chipset developed between 1984 and 1989 at the Angstrem Research Institute by the same team that developed the 1801BMx series of CPUs. It was the first Soviet, and later the first Russian 32-bit microprocessor system. From a programmer's point of view, it was a complete replica of the VAX 11/750 Comet and unlike the MicroVAX microprocessors produced by DEC, it included floating-point arithmetic. The chipset included a processor, a coprocessor for integer and floating-point arithmetic, a memory controller, and a bus adapter. It was fabricated in a 3 μm process. The Electronika-32 computer and a VAX-PC board were built based on this chipset, as well as the aerospace on-board digital computer SB3541. The 1839 chipset is still in production, and is used in the control systems of the GLONASS-M satellites.