DEC T-11

Last updated
Die shot of DEC T-11 DEC T-11 die.JPG
Die shot of DEC T-11

The T-11, also known as DC310 or DCT11, is a microprocessor that implements the PDP-11 instruction set architecture (ISA) developed by Digital Equipment Corporation. The T-11 was code-named "Tiny". It was developed for embedded systems and was the first single-chip microprocessor developed by DEC. Going into volume production in early 1982, [1] it was sold openly and was used by DEC in disk controllers (Eg: M8639 RQDX2 controller), the VT240 terminal, auxiliary processors and in the Atari System 2 arcade game system. It operated at 7.5 MHz or 10 MHz (three versions, two speeds), used a 5 V power supply and dissipated 1.1 W maximum. It contained 13,000 transistors, used NMOS logic, and was fabricated in a NMOS process. By 1987, three versions of the DCT11 were available: 21-17311-01 (original 7.5 MHz version, produced by DEC), 21-17311-00 (second source, 7.5 MHz, from Synertek), and 21-17311-02 (10 MHz version, produced by DEC). [2]

A clone of the T-11 was manufactured in the Soviet Union under the designation KR1807VM1 (Russian : КР1807ВМ1). [3]

Related Research Articles

Motorola 6800 8-bit microprocessor

The 6800 is an 8-bit microprocessor designed and first manufactured by Motorola in 1974. The MC6800 microprocessor was part of the M6800 Microcomputer System that also included serial and parallel interface ICs, RAM, ROM and other support chips. A significant design feature was that the M6800 family of ICs required only a single five-volt power supply at a time when most other microprocessors required three voltages. The M6800 Microcomputer System was announced in March 1974 and was in full production by the end of that year.

StrongARM Family of computer microprocessors

The StrongARM is a family of computer microprocessors developed by Digital Equipment Corporation and manufactured in the late 1990s which implemented the ARM v4 instruction set architecture. It was later sold to Intel in 1997, who continued to manufacture it before replacing it with the XScale in the early 2000s.

N-type metal-oxide-semiconductor logic uses n-type (-) MOSFETs to implement logic gates and other digital circuits. These nMOS transistors operate by creating an inversion layer in a p-type transistor body. This inversion layer, called the n-channel, can conduct electrons between n-type "source" and "drain" terminals. The n-channel is created by applying voltage to the third terminal, called the gate. Like other MOSFETs, nMOS transistors have four modes of operation: cut-off, triode, saturation, and velocity saturation.

CMOS Technology for constructing integrated circuits

Complementary metal–oxide–semiconductor, also known as complementary-symmetry metal–oxide–semiconductor (COS-MOS), is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFETs for logic functions. CMOS technology is used for constructing integrated circuit (IC) chips, including microprocessors, microcontrollers, memory chips, and other digital logic circuits. CMOS technology is also used for analog circuits such as image sensors, data converters, RF circuits, and highly integrated transceivers for many types of communication.

Depletion-load NMOS logic Form of digital logic family in integrated circuits

In integrated circuits, depletion-load NMOS is a form of digital logic family that uses only a single power supply voltage, unlike earlier nMOS logic families that needed more than one different power supply voltage. Although manufacturing these integrated circuits required additional processing steps, improved switching speed and the elimination of the extra power supply made this logic family the preferred choice for many microprocessors and other logic elements.

CVAX

The CVAX is a microprocessor chipset developed and fabricated by Digital Equipment Corporation (DEC) that implemented the VAX instruction set architecture (ISA). The chipset consisted of the CVAX 78034 CPU, CFPA floating-point accelerator, CVAX clock chip, and the associated support chips, the CVAX System Support Chip (CSSC), CVAX Memory Controller (CMCTL), and CVAX Q-Bus Interface Chip (CQBIC).

R3000

The R3000 is a 32-bit RISC microprocessor chipset developed by MIPS Computer Systems that implemented the MIPS I instruction set architecture (ISA). Introduced in June 1988, it was the second MIPS implementation, succeeding the R2000 as the flagship MIPS microprocessor. It operated at 20, 25 and 33.33 MHz.

PMOS logic Family of digital circuits

PMOS or pMOS logic is a family of digital circuits based on p-channel, enhancement mode metal–oxide–semiconductor field-effect transistors (MOSFETs). In the late 1960s and early 1970s, PMOS logic was the dominant semiconductor technology for large-scale integrated circuits before being superseded by NMOS and CMOS devices.

V-11

The V-11, code-named "Scorpio", is a miniprocessor chip set implementation of the VAX instruction set architecture (ISA) developed and fabricated by Digital Equipment Corporation (DEC).

VAX 8000 Discontinued family of superminicomputers

The VAX 8000 is a discontinued family of superminicomputers developed and manufactured by Digital Equipment Corporation (DEC) using processors implementing the VAX instruction set architecture (ISA).

Alpha 21064

The Alpha 21064 is a microprocessor developed and fabricated by Digital Equipment Corporation that implemented the Alpha instruction set architecture (ISA). It was introduced as the DECchip 21064 before it was renamed in 1994. The 21064 is also known by its code name, EV4. It was announced in February 1992 with volume availability in September 1992. The 21064 was the first commercial implementation of the Alpha ISA, and the first microprocessor from Digital to be available commercially. It was succeeded by a derivative, the Alpha 21064A in October 1993.

Alpha 21164

The Alpha 21164, also known by its code name, EV5, is a microprocessor developed and fabricated by Digital Equipment Corporation that implemented the Alpha instruction set architecture (ISA). It was introduced in January 1995, succeeding the Alpha 21064A as Digital's flagship microprocessor. It was succeeded by the Alpha 21264 in 1998.

Alpha 21264

The Alpha 21264 is a Digital Equipment Corporation RISC microprocessor launched on 19 October 1998. The 21264 implemented the Alpha instruction set architecture (ISA).

MicroVAX 78032

The MicroVAX 78032 is a microprocessor developed and fabricated by Digital Equipment Corporation (DEC) that implemented a subset of the VAX instruction set architecture (ISA). The 78032 was used exclusively in DEC's VAX-based systems, starting with the MicroVAX II in 1985. When clocked at a frequency of 5 MHz, the 78032's integer performance is comparable to the original VAX-11/780 of 1977. The microprocessor could be paired with the MicroVAX 78132 floating point accelerator for improved floating point performance.

Rigel (microprocessor)

Rigel was a microprocessor chip set developed and fabricated by Digital Equipment Corporation (DEC) that implemented the VAX instruction set architecture (ISA). It was introduced on 11 July 1989 with the introduction of the VAX 6000 Model 400, the first system to feature the chip set. Rigel was also used in the VAX 4000 Model 300 and VAXstation 3100 Model 76. Production Rigel CPUs were rated at 35 to 43 MHz.

The R2000 is a 32-bit microprocessor chip set developed by MIPS Computer Systems that implemented the MIPS I instruction set architecture (ISA). Introduced in January 1986, it was the first commercial implementation of the MIPS architecture and the first commercial RISC processor available to all companies. The R2000 competed with Digital Equipment Corporation (DEC) VAX minicomputers and with Motorola 68000 and Intel Corporation 80386 microprocessors. R2000 users included Ardent Computer, DEC, Silicon Graphics, Northern Telecom and MIPS's own Unix workstations.

The IXP1200 is a network processor fabricated by Intel Corporation. The processor was originally a Digital Equipment Corporation (DEC) project that had been in development since late 1996. When parts of DEC's Digital Semiconductor business was acquired by Intel in 1998 as part of an out-of-court settlement to end lawsuits each company had launched at each other for patent infringement, the processor was transferred to Intel. The DEC design team was retained and the design was completed by them under Intel. Samples of the processor were available for Intel partners since 1999, with general sample availability in late 1999. The processor was introduced in early 2000 at 166 and 200 MHz. A 232 MHz version was introduced later. The processor was later succeeded by the IXP2000, an XScale-based family developed entirely by Intel.

DEC J-11

The J-11 is a microprocessor chip set that implements the PDP-11 instruction set architecture (ISA) jointly developed by Digital Equipment Corporation and Harris Semiconductor. It was a high-end chip set designed to integrate the performance and features of the PDP-11/70 onto a handful of chips. It was used in the PDP-11/73, PDP-11/83 and Professional 380.

The 6 μm process is the level of MOSFET semiconductor process technology that was reached around 1974, by leading semiconductor companies such as Toshiba and Intel.

К1839 is a microprocessor chipset developed between 1984 and 1989 at the Angstrem Research Institute by the same team that developed the 1801BMx series of CPUs. It was the first Soviet, and later the first Russian 32-bit microprocessor system. From a programmer's point of view, it was a complete replica of the VAX 11/750 Comet and included floating-point arithmetic, unlike the MicroVAX microprocessors produced by DEC. The chipset included a processor, a coprocessor for integer and floating-point arithmetic, a memory controller and a bus adapter. It was fabricated in a 3 µm process. The Electronika-32 computer and a VAX-PC board were built based on this chipset, as well as the aerospace on-board digital computer SB3541. The 1839 chipset is still in production, and is used in the control systems of the GLONASS-M satellites.

References

  1. "T-11 Engineering Specification" (PDF). March 24, 1982.
  2. Semiconductor Databook, Volume 1 (PDF). Digital Equipment Corporation, Semiconductor Operations. 1987.
  3. "Soviet microprocessors, microcontrollers, FPU chips and their western analogs". CPU-world. Retrieved 24 March 2016.