Massbus

Last updated

The Massbus is a high-performance computer input/output bus designed in the 1970s by Digital Equipment Corporation (DEC). The architecture development was sponsored by Gordon Bell and John Levy was the principal architect.

Contents

The bus was used by Digital to interconnect its highest-performance computers with magnetic disk and magnetic tape storage equipment. The use of a common bus was intended to allow a single controller design to handle multiple peripheral models, [1] :7.0 and allowed the PDP-10, PDP-11, and VAX computer families to share a common set of peripherals. At the time there were multiple operating systems for each of the 16-bit, 32-bit, and 36-bit computer lines. The 18-bit PDP-15/40 connected to Massbus peripherals via a PDP-11 front end. An engineering goal was to reduce the need for a new driver per peripheral per operating system per computer family. Also, a major technical goal was to place any magnetic technology changes (data separators) into the storage device rather than in the CPU-attached controller. Thus the CPU I/O or memory bus to Massbus adapter needed no changes for multiple generations of storage technology.

A business objective was to provide a subsystem entry price well below that of IBM storage subsystems which used large and expensive controllers unique to each storage technology and processor architecture and were optimized for connecting large numbers of storage devices.

The first Massbus device was the RP04, based on Sperry Univac Information Storage Systems's (ISS) clone of the IBM 3330. [2] Subsequently, DEC offered the RP05 and RP06, based on Memorex's 3330 clone. Memorex modified the IBM compatible interface to DEC requirements and moved the data separator electronics into the drive. DEC designed the rest which was mounted in the "bustle" attached to the drive. This set the pattern for future improvements of disk technology to double density 3330, CDC SMD drives, and then "Winchester" technology. Drives were supplied by ISS/Univac, Memorex, and Control Data. Multiple generations of tape technology and performance were also Massbus connected although the architecture was a Master Massbus drive and slave tape drives. DEC also developed the Massbus RS03/04, a head per track disk drive for high performance swapping. The last Massbus disk drive was the DEC designed RM80 as DEC shifted to internal development of large disks.

Logical implementation

The bus is logically implemented as two separate sections:

Massbus peripherals

Disk

RP06 disk drive, with cover for removable pack atop its sliding glass door LCM - DEC RP06 drives - 02.jpg
RP06 disk drive, with cover for removable pack atop its sliding glass door
The RP04 [5] and RP06 [6] disks were comparable to the 100 MB IBM 3330 Mod I and IBM's 200 MB Model 11 thereof. The 100 MB RP05 was designated as "high performance" compared to the RP04. [7]

Tape

Massbus CPU interfaces

Related Research Articles

<span class="mw-page-title-main">Parallel ATA</span> Computer interface standard

Parallel ATA (PATA), originally AT Attachment, also known as IDE or Integrated Drive Electronics, is a standard interface designed for IBM PC-compatible computers. It was first developed by Western Digital and Compaq in 1986 for compatible hard drives and CD or DVD drives. The connection is used for storage devices such as hard disk drives, floppy disk drives, optical disc drives, and tape drives in computers.

<span class="mw-page-title-main">Digital Equipment Corporation</span> U.S. computer manufacturer (1957–1998)

Digital Equipment Corporation, using the trademark Digital, was a major American company in the computer industry from the 1960s to the 1990s. The company was co-founded by Ken Olsen and Harlan Anderson in 1957. Olsen was president until he was forced to resign in 1992, after the company had gone into precipitous decline.

<span class="mw-page-title-main">PDP-10</span> 36-bit computer by Digital (1966–1983)

Digital Equipment Corporation (DEC)'s PDP-10, later marketed as the DECsystem-10, is a mainframe computer family manufactured beginning in 1966 and discontinued in 1983. 1970s models and beyond were marketed under the DECsystem-10 name, especially as the TOPS-10 operating system became widely used.

<span class="mw-page-title-main">PDP-11</span> Series of 16-bit minicomputers

The PDP–11 is a series of 16-bit minicomputers sold by Digital Equipment Corporation (DEC) from 1970 into the late 1990s, one of a set of products in the Programmed Data Processor (PDP) series. In total, around 600,000 PDP-11s of all models were sold, making it one of DEC's most successful product lines. The PDP-11 is considered by some experts to be the most popular minicomputer.

<span class="mw-page-title-main">SCSI</span> Set of computer and peripheral connection standards

Small Computer System Interface is a set of standards for physically connecting and transferring data between computers and peripheral devices, best known for its use with storage devices such as hard disk drives. SCSI was introduced in the 1980s and has seen widespread use on servers and high-end workstations, with new SCSI standards being published as recently as SAS-4 in 2017.

<span class="mw-page-title-main">IBM System/360</span> IBM mainframe computer family (1964–1977)

The IBM System/360 (S/360) is a family of mainframe computer systems that was announced by IBM on April 7, 1964, and delivered between 1965 and 1978. It was the first family of computers designed to cover both commercial and scientific applications and a complete range of applications from small to large. The design distinguished between architecture and implementation, allowing IBM to release a suite of compatible designs at different prices. All but the only partially compatible Model 44 and the most expensive systems use microcode to implement the instruction set, featuring 8-bit byte addressing and fixed point binary, fixed point decimal and hexadecimal floating-point calculations.

<span class="mw-page-title-main">Booting</span> Process of starting a computer

In computing, booting is the process of starting a computer as initiated via hardware such as a button on the computer or by a software command. After it is switched on, a computer's central processing unit (CPU) has no software in its main memory, so some process must load software into memory before it can be executed. This may be done by hardware or firmware in the CPU, or by a separate processor in the computer system.

<span class="mw-page-title-main">UNIVAC</span> Series of mainframe computer models

UNIVAC was a line of electronic digital stored-program computers starting with the products of the Eckert–Mauchly Computer Corporation. Later the name was applied to a division of the Remington Rand company and successor organizations.

IBM manufactured magnetic disk storage devices from 1956 to 2003, when it sold its hard disk drive business to Hitachi. Both the hard disk drive (HDD) and floppy disk drive (FDD) were invented by IBM and as such IBM's employees were responsible for many of the innovations in these products and their technologies. The basic mechanical arrangement of hard disk drives has not changed since the IBM 1301. Disk drive performance and characteristics are measured by the same standards now as they were in the 1950s. Few products in history have enjoyed such spectacular declines in cost and physical size along with equally dramatic improvements in capacity and performance.

<span class="mw-page-title-main">DECtape</span>

DECtape, originally called Microtape, is a magnetic tape data storage medium used with many Digital Equipment Corporation computers, including the PDP-6, PDP-8, LINC-8, PDP-9, PDP-10, PDP-11, PDP-12, and the PDP-15. On DEC's 32-bit systems, VAX/VMS support for it was implemented but did not become an official part of the product lineup.

<span class="mw-page-title-main">Rainbow 100</span> DEC microcomputer

The Rainbow 100 is a microcomputer introduced by Digital Equipment Corporation (DEC) in 1982. This desktop unit had a monitor similar to the VT220 and a dual-CPU box with both 4 MHz Zilog Z80 and 4.81 MHz Intel 8088 CPUs. The Rainbow 100 was a triple-use machine: VT100 mode, 8-bit CP/M mode, and CP/M-86 or MS-DOS mode using the 8088. It ultimately failed to in the marketplace which became dominated by the simpler IBM PC and its clones which established the industry standard as compatibility with CP/M became less important than IBM PC compatibility. Writer David Ahl called it a disastrous foray into the personal computer market. The Rainbow was launched along with the similarly packaged DEC Professional and DECmate II which were also not successful. The failure of DEC to gain a significant foothold in the high-volume PC market would be the beginning of the end of the computer hardware industry in New England, as nearly all computer companies located there were focused on minicomputers for large organizations, from DEC to Data General, Wang, Prime, Computervision, Honeywell, and Symbolics Inc.

Memorex Corp. began as a computer tape producer and expanded to become both a consumer media supplier and a major IBM plug compatible peripheral supplier. It was broken up and ceased to exist after 1996 other than as a consumer electronics brand specializing in disk recordable media for CD and DVD drives, flash memory, computer accessories and other electronics.

<span class="mw-page-title-main">VAX-11</span> Family of superminicomputers by Digital

The VAX-11 is a discontinued family of 32-bit superminicomputers, running the Virtual Address eXtension (VAX) instruction set architecture (ISA), developed and manufactured by Digital Equipment Corporation (DEC). Development began in 1976. In addition to being powerful machines in their own right, they also offer the additional ability to run user mode PDP-11 code, offering an upward compatible path for existing customers.

<span class="mw-page-title-main">RK05</span> Disk drive for Digital Equipment Corporation minicomputers

Digital Equipment Corporation's RK05 is a disk drive whose removable disk pack can hold about 2.5 megabytes of data. Introduced 1972, it is similar to IBM's 1964-introduced 2310, and uses a disk pack similar to IBM's 2315 disk pack, although the latter only held 1 megabyte. An RK04 drive, which has half the capacity of an RK05, was also offered.

<span class="mw-page-title-main">History of hard disk drives</span> Development of computer data storage

In 1953, IBM recognized the immediate application for what it termed a "Random Access File" having high capacity and rapid random access at a relatively low cost. After considering technologies such as wire matrices, rod arrays, drums, drum arrays, etc., the engineers at IBM's San Jose California laboratory invented the hard disk drive. The disk drive created a new level in the computer data hierarchy, then termed Random Access Storage but today known as secondary storage, less expensive and slower than main memory but faster and more expensive than tape drives.

The Digital Storage Systems Interconnect (DSSI) is a computer bus developed by Digital Equipment Corporation for connecting storage devices and clustering VAX systems. It was designed as a smaller and lower-cost replacement for the earlier DEC Computer Interconnect that would be more suitable for use in office environments. DSSI was superseded by Parallel SCSI.

Hard disk drives are accessed over one of a number of bus types, including parallel ATA, Serial ATA (SATA), SCSI, Serial Attached SCSI (SAS), and Fibre Channel. Bridge circuitry is sometimes used to connect hard disk drives to buses with which they cannot communicate natively, such as IEEE 1394, USB, SCSI, NVMe and Thunderbolt.

RL01 and RL02 drives are moving head magnetic disk drives manufactured by Digital Equipment Corporation for the PDP-8 and PDP-11 microcomputers. The RL01 and RL02 drives stored approximate 5MB and 10MB respectively, utilizing a removable data cartridge. The drives are typically mounted in a standard 19" rack and weigh 34 kg. Up to four RL02 or RL01 drives may be used, in any combination, from a single controller. Typically an RL11 in the case of a Unibus PDP-11 and an RLV11 or RLV12 in the case of a Q-bus PDP-11. On the PDP-8/a the controller is an RL8A which consists of an M8433 Hex wide Omnibus card.

<span class="mw-page-title-main">Bus and Tag</span> IBM peripheral interface

Bus and Tag is an "IBM standard for a computer peripheral interface", and was commonly used to connect their mainframe computers to peripheral devices such as line printers, disk storage, magnetic tape drives and IBM 3270 display controllers. The technology uses two sets of thick, multi-connector copper cables, one set, carrying data, called the bus, and the other set, carrying control information, called the tag.

References

  1. 1 2 3 4 "Massbus Specification" (PDF). DEC STD 159.
  2. 1 2 RP04 Disk Drive Installation Manual (PDF) (1st ed.). Digital Equipment Corporation. March 1975. p. 1-1. EK-RP04-IN-001. The RP04 (Figure 1-2) consists of a 733 DEC Disk Storage Drive (manufactured by Information Storage Systems) and a Device Control Logic (DCL) unit (Figure 1-3) (manufactured by Digital Equipment Corporation).
  3. "RP06 disk drive". Computer History Museum.
  4. "RP05/RP06 disk drive installation manual" (PDF). Digital Equipment Corporation. EK-RP056-IN-001.
  5. "The DEC RP04 Disk Drive". columbia.edu. 1975. Retrieved 2024-06-09.
  6. "The DEC RP06 Disk Drive". columbia.edu. 1977. Retrieved 2024-06-09.
  7. 1 2 EK-DEC20-SP-002 DECSYSTEM-20 Site Preparation Guide.
  8. "DECsystem-10 Technical Summary". inwap.com. 1981. Archived from the original on 2022-03-24.
  9. RM MASSBUS Adapter Technical Description Manual (PDF). Digital Equipment Corporation. October 1980. p. IV.
  10. top density
  11. "TA78 Magnetic Tape Drive Service Manual" (PDF). Digital Equipment Corporation. 1984. EK-0TA78-SV-001.
  12. "DIGITAL TU78 Reel-to-Reel Tape Drive: Overview".
  13. Storage Systems: TA78 & TU78. Digital Equipment Corporation. ORDER CODE ED-23908-18
  14. Bell, C. Gordon; Mudge, J. Craig; McNamara, John E. (August 1979). Computer Engineering: A DEC View of Hardware Systems Design. Digital Press. p. 278. ISBN   0-932376-00-2.
  15. "RH750 Massbus Adapter Technical Description". manx-docs.org. Retrieved 2024-06-09.