Mass Storage Control Protocol

Last updated

The Mass Storage Control Protocol (MSCP) is a protocol that was designed by Digital Equipment Corporation of Maynard, Massachusetts for the purposes of controlling their high-end mass storage options.

First implemented in the HSC50 hierarchical storage controller, the protocol quickly spread throughout the entire line of mass storage controllers built by DEC. The UDA50 is an implementation of MSCP built on a Unibus card; other implementations (for example, the RQDX) stretch down to the Q-bus and small, 5 megabyte disk drives and even diskettes.

Designed to minimize the amount of CPU involvement, the protocol depends upon two queues. Into one queue are placed packets which fully describe the commands to be executed by the mass storage subsystem. To initiate an I/O request, the CPU has only to create a small data structure in memory, append it to a "send" queue, and if that is the first packet in the send queue, wake the MSCP controller. After the command has been executed, an appropriate status packet is placed into the second queue to be read by the CPU.

Interrupts to the CPU (a costly operation) are not needed so long as further command packets remain in the command queue and the response queue is not in danger of over-flowing. I/O-space reads and writes to the MSCP controller, a less-expensive but still-costly operation, are similarly minimized.

Because MSCP packets were deliberately designed to resemble the packets exchanged on the VMScluster interconnects, it is a very inexpensive operation to ship storage requests around a VMScluster for remote execution; this greatly facilitates the creation of large-scale VMSclusters. The dependence upon in-memory packets and the minimization of interrupts and I/O-space reads and writes greatly facilitates remote operations.

Related Research Articles

<span class="mw-page-title-main">Parallel ATA</span> Computer interface standard

Parallel ATA (PATA), originally AT Attachment, also known as IDE or Integrated Drive Electronics, is a standard interface designed for IBM PC-compatible computers. It was first developed by Western Digital and Compaq in 1986 for compatible hard drives and CD or DVD drives. The connection is used for storage devices such as hard disk drives, floppy disk drives, optical disc drives, and tape drives in computers.

The control unit (CU) is a component of a computer's central processing unit (CPU) that directs the operation of the processor. A CU typically uses a binary decoder to convert coded instructions into timing and control signals that direct the operation of the other units.

<span class="mw-page-title-main">Bus (computing)</span> System that transfers data between components within a computer

In computer architecture, a bus is a communication system that transfers data between components inside a computer, or between computers. This expression covers all related hardware components and software, including communication protocols.

In computing, a context switch is the process of storing the state of a process or thread, so that it can be restored and resume execution at a later point, and then restoring a different, previously saved, state. This allows multiple processes to share a single central processing unit (CPU), and is an essential feature of a multiprogramming or multitasking operating system. In a traditional CPU, each process - a program in execution - utilizes the various CPU registers to store data and hold the current state of the running process. However, in a multitasking operating system, the operating system switches between processes or threads to allow the execution of multiple processes simultaneously. For every switch, the operating system must save the state of the currently running process, followed by loading the next process state, which will run on the CPU. This sequence of operations that stores the state of the running process and the loading of the following running process is called a context switch.

<span class="mw-page-title-main">Interrupt</span> Signal to a computer processor emitted by hardware or software

In digital computers, an interrupt is a request for the processor to interrupt currently executing code, so that the event can be processed in a timely manner. If the request is accepted, the processor will suspend its current activities, save its state, and execute a function called an interrupt handler to deal with the event. This interruption is often temporary, allowing the software to resume normal activities after the interrupt handler finishes, although the interrupt could instead indicate a fatal error.

<span class="mw-page-title-main">Operating system</span> Software that manages computer hardware resources

An operating system (OS) is system software that manages computer hardware and software resources, and provides common services for computer programs.

A real-time operating system (RTOS) is an operating system (OS) for real-time computing applications that processes data and events that have critically defined time constraints. An RTOS is distinct from a time-sharing operating system, such as Unix, which manages the sharing of system resources with a scheduler, data buffers, or fixed task prioritization in a multitasking or multiprogramming environments. Processing time requirements need to be fully understood and bound rather than just kept as a minimum. All processing must occur within the defined constraints. Real-time operating systems are event-driven and preemptive, meaning the OS can monitor the relevant priority of competing tasks, and make changes to the task priority. Event-driven systems switch between tasks based on their priorities, while time-sharing systems switch the task based on clock interrupts.

Direct memory access (DMA) is a feature of computer systems that allows certain hardware subsystems to access main system memory independently of the central processing unit (CPU).

In computing, scheduling is the action of assigning resources to perform tasks. The resources may be processors, network links or expansion cards. The tasks may be threads, processes or data flows.

<span class="mw-page-title-main">Network interface controller</span> Hardware component that connects a computer to a network

A network interface controller is a computer hardware component that connects a computer to a computer network.

TCP offload engine (TOE) is a technology used in some network interface cards (NIC) to offload processing of the entire TCP/IP stack to the network controller. It is primarily used with high-speed network interfaces, such as gigabit Ethernet and 10 Gigabit Ethernet, where processing overhead of the network stack becomes significant. TOEs are often used as a way to reduce the overhead associated with Internet Protocol (IP) storage protocols such as iSCSI and Network File System (NFS).

<span class="mw-page-title-main">Native Command Queuing</span>

In computing, Native Command Queuing (NCQ) is an extension of the Serial ATA protocol allowing hard disk drives to internally optimize the order in which received read and write commands are executed. This can reduce the amount of unnecessary drive head movement, resulting in increased performance for workloads where multiple simultaneous read/write requests are outstanding, most often occurring in server-type applications.

In computer science, asynchronous I/O is a form of input/output processing that permits other processing to continue before the I/O operation has finished. A name used for asynchronous I/O in the Windows API is overlapped I/O.

In computing, channel I/O is a high-performance input/output (I/O) architecture that is implemented in various forms on a number of computer architectures, especially on mainframe computers. In the past, channels were generally implemented with custom devices, variously named channel, I/O processor, I/O controller, I/O synchronizer, or DMA controller.

Tagged Command Queuing (TCQ) is a technology built into certain ATA and SCSI hard drives. It allows the operating system to send multiple read and write requests to a hard drive. ATA TCQ is not identical in function to the more efficient Native Command Queuing (NCQ) used by SATA drives. SCSI TCQ does not suffer from the same limitations as ATA TCQ.

The Network Livermore Timesharing System is an operating system that was actively developed at Lawrence Livermore Laboratory from 1979 until about 1988, though it continued to run production applications until 1995. An earlier system, the Livermore Time Sharing System had been developed over a decade earlier.

<span class="mw-page-title-main">Disk buffer</span>

In computer storage, a disk buffer is the embedded memory in a hard disk drive (HDD) or solid-state drive (SSD) acting as a buffer between the rest of the computer and the physical hard disk platter or flash memory that is used for storage. Modern hard disk drives come with 8 to 256 MiB of such memory, and solid-state drives come with up to 4 GB of cache memory.

In IBM mainframe operating systems OS/360 and its successors, a Unit Control Block (UCB) is a memory structure, or a control block, that describes any single input/output peripheral device (unit), or an exposure (alias), to the operating system. Certain data within the UCB also instructs the Input/Output Supervisor (IOS) to use certain closed subroutines in addition to normal IOS processing for additional physical device control.

libtorrent

libtorrent is an open-source implementation of the BitTorrent protocol. It is written in and has its main library interface in C++. Its most notable features are support for Mainline DHT, IPv6, HTTP seeds and μTorrent's peer exchange. libtorrent uses Boost, specifically Boost.Asio to gain its platform independence. It is known to build on Windows and most Unix-like operating systems.

A VMScluster, originally known as a VAXcluster, is a computer cluster involving a group of computers running the OpenVMS operating system. Whereas tightly coupled multiprocessor systems run a single copy of the operating system, a VMScluster is loosely coupled: each machine runs its own copy of OpenVMS, but the disk storage, lock manager, and security domain are all cluster-wide, providing a single system image abstraction. Machines can join or leave a VMScluster without affecting the rest of the cluster. For enhanced availability, VMSclusters support the use of dual-ported disks connected to two machines or storage controllers simultaneously.