Porting

Last updated

In software engineering, porting is the process of adapting software for the purpose of achieving some form of execution in a computing environment that is different from the one that a given program (meant for such execution) was originally designed for (e.g., different CPU, operating system, or third party library). The term is also used when software/hardware is changed to make them usable in different environments. [1] [2]

Contents

Software is portable when the cost of porting it to a new platform is significantly less than the cost of writing it from scratch. The lower the cost of porting software relative to its implementation cost, the more portable it is said to be.

Etymology

The term "port" is derived from the Latin portāre , meaning "to carry". [3] When code is not compatible with a particular operating system or architecture, the code must be "carried" to the new system.

The term is not generally applied to the process of adapting software to run with less memory on the same CPU and operating system.

Software developers often claim that the software they write is portable , meaning that little effort is needed to adapt it to a new environment. The amount of effort actually needed depends on several factors, including the extent to which the original environment (the source platform) differs from the new environment (the target platform), the experience of the original authors in knowing which programming language constructs and third party library calls are unlikely to be portable, and the amount of effort invested by the original authors in only using portable constructs (platform specific constructs often provide a cheaper solution).

History

The number of significantly different CPUs and operating systems used on the desktop today is much smaller than in the past. The dominance of the x86 architecture means that most desktop software is never ported to a different CPU. In that same market, the choice of operating systems has effectively been reduced to three: Microsoft Windows, macOS, and Linux. However, in the embedded systems and mobile markets, portability remains a significant issue, with the ARM being a widely used alternative.

International standards, such as those promulgated by the ISO, greatly facilitate porting by specifying details of the computing environment in a way that helps reduce differences between different standards-conforming platforms. Writing software that stays within the bounds specified by these standards represents a practical although nontrivial effort. Porting such a program between two standards-compliant platforms (such as POSIX.1) can be just a matter of loading the source code and recompiling it on the new platform. However, practitioners often find that various minor corrections are required, due to subtle platform differences. Most standards suffer from "gray areas" where differences in interpretation of standards lead to small variations from platform to platform.

There also exists an ever-increasing number of tools to facilitate porting, such as the GNU Compiler Collection, which provides consistent programming languages on different platforms, and Autotools, which automates the detection of minor variations in the environment and adapts the software accordingly before compilation.

The compilers for some high-level programming languages (e.g. Eiffel, Esterel) gain portability by outputting source code in another high level intermediate language (such as  C) for which compilers for many platforms are generally available.

Two activities related to (but distinct from) porting are emulating and cross-compiling.

Porting compilers

Instead of translating directly into machine code, modern compilers translate to a machine independent intermediate code in order to enhance portability of the compiler and minimize design efforts. The intermediate language defines a virtual machine that can execute all programs written in the intermediate language (a machine is defined by its language and vice versa). [4] The intermediate code instructions are translated into equivalent machine code sequences by a code generator to create executable code. It is also possible to skip the generation of machine code by actually implementing an interpreter or JIT for the virtual machine. [5]

The use of intermediate code enhances portability of the compiler, because only the machine dependent code (the interpreter or the code generator) of the compiler itself needs to be ported to the target machine. The remainder of the compiler can be imported as intermediate code and then further processed by the ported code generator or interpreter, thus producing the compiler software or directly executing the intermediate code on the interpreter. The machine independent part can be developed and tested on another machine (the host machine). This greatly reduces design efforts, because the machine independent part needs to be developed only once to create portable intermediate code. [6]

An interpreter is less complex and therefore easier to port than a code generator, because it is not able to do code optimizations due to its limited view of the program code (it only sees one instruction at a time, and you need a sequence to do optimization). Some interpreters are extremely easy to port, because they only make minimal assumptions about the instruction set of the underlying hardware. As a result, the virtual machine is even simpler than the target CPU. [7]

Writing the compiler sources entirely in the programming language the compiler is supposed to translate, makes the following approach, better known as compiler bootstrapping , feasible on the target machine:

  1. Port the interpreter. This needs to be coded in assembly code, using an already present assembler on the target.
  2. Adapt the source of the code generator to the new machine.
  3. Execute the adapted source using the interpreter with the code generator source as input. This will generate the machine code for the code generator.

The difficult part of coding the optimization routines is done using the high-level language instead of the assembly language of the target.

According to the designers of the BCPL language, interpreted code (in the BCPL case) is more compact than machine code; typically by a factor of two to one. Interpreted code however runs about ten times slower than compiled code on the same machine. [8]

The designers of the Java programming language try to take advantage of the compactness of interpreted code, because a Java program may need to be transmitted over the Internet before execution can start on the target's Java virtual machine (JVM).

Porting of video games

Porting is also the term used when a video game designed to run on one platform, be it an arcade, video game console, or personal computer, is converted to run on a different platform, perhaps with some minor differences. [9] From the beginning of video games through to the 1990s, "ports", at the time often known as "conversions", were often not true ports, but rather reworked versions of the games due to limitations of different systems. For example, the 1982 game The Hobbit , a text adventure augmented with graphic images, has significantly different graphic styles across the range of personal computers that its ports were developed for. [10] However, many 21st century video games are developed using software (often in C++) that can output code for one or more consoles as well as for a PC without the need for actual porting (instead relying on the common porting of individual component libraries). [10]

Porting arcade games to home systems with inferior hardware was difficult. The ported version of Pac-Man for the Atari 2600 omitted many of the visual features of the original game to compensate for the lack of ROM space and the hardware struggled when multiple ghosts appeared on the screen creating a flickering effect. The poor performance of the Atari 2600 Pac-Man is cited by some scholars as a cause of the video game crash of 1983. [11]

Many early ports suffered significant gameplay quality issues because computers greatly differed. [12] Richard Garriott stated in 1984 at Origins Game Fair that Origin Systems developed computer games for the Apple II series first then ported them to Commodore 64 and Atari 8-bit, because the latter machines' sprites and other sophisticated features made porting from them to Apple "far more difficult, perhaps even impossible". [13] Reviews complained of ports that suffered from "Apple conversionitis", [14] retaining the Apple's "lousy sound and black-white-green-purple graphics"; [15] [16] after Garriott's statement, when Dan Bunten asked "Atari and Commodore people in the audience, are you happy with the Apple rewrites?" the audience shouted "No!" Garriott responded, "[otherwise] the Apple version will never get done. From a publisher's point of view that's not money wise". [13]

Others worked differently. Ozark Softscape, for example, wrote M.U.L.E. for the Atari first because it preferred to develop for the most advanced computers, removing or altering features as necessary during porting. Such a policy was not always feasible; Bunten stated that "M.U.L.E. can't be done for an Apple", [12] and that the non-Atari versions of The Seven Cities of Gold were inferior. [17] Compute!'s Gazette wrote in 1986 that when porting from Atari to Commodore the original was usually superior. The latter's games' quality improved when developers began creating new software for it in late 1983, the magazine stated. [18]

In porting arcade games, the terms "arcade perfect" or "arcade accurate" were often used to describe how closely the gameplay, graphics, and other assets on the ported version matched the arcade version. Many arcade ports in the early 1980s were far from arcade perfect as home consoles and computers lacked the sophisticated hardware in arcade games, but games could still approximate the gameplay. Notably, Space Invaders on the Atari VCS became the console's killer app despite its differences, [19] while the later Pac-Man port was notorious for its deviations from the arcade version. [20] Arcade-accurate games became more prevalent starting in the 1990s as home consoles caught up to the power of arcade systems. Notably, the Neo Geo system from SNK, which was introduced as a multi-game arcade system, and would also be offered as a home console with the same specifications. This allowed arcade perfect games to be played at home. [10]

A "console port" is a game that was originally made for a console before an identical version is created which can be played on a personal computer. This term has been widely used by the gaming community. The process of porting a game from a console to a PC is often regarded negatively due to the higher levels of performance that computers generally have being underutilized, partially due to console hardware being fixed throughout their run (with games being developed for console specs), while PCs become more powerful as hardware evolves, but also due to ported games sometimes being poorly optimized for PCs, or lazily ported. While broadly similar, architectural differences may exist such as the use of unified memory on a console.

See also

Related Research Articles

<span class="mw-page-title-main">Atari 5200</span> Home video game console

The Atari 5200 SuperSystem or simply Atari 5200 is a home video game console introduced in 1982 by Atari, Inc. as a higher-end complement for the popular Atari Video Computer System. The VCS was renamed to the Atari 2600 at the time of the 5200's launch. Created to compete with Mattel's Intellivision, the 5200 wound up a direct competitor of ColecoVision shortly after its release. While the Coleco system shipped with the first home version of Nintendo's Donkey Kong, the 5200 included the 1978 arcade game Super Breakout which had already appeared on the Atari 8-bit family and Atari VCS in 1979 and 1981 respectively.

<span class="mw-page-title-main">Atari 7800</span> Home video game console

The Atari 7800 ProSystem, or simply the Atari 7800, is a home video game console officially released by Atari Corporation in 1986 as the successor to both the Atari 2600 and Atari 5200. It can run almost all Atari 2600 cartridges, making it one of the first consoles with backward compatibility. It shipped with a different model of joystick from the 2600-standard CX40 and Pole Position II as the pack-in game. Most of the announced titles at launch were ports of 1981–1983 arcade video games.

BCPL is a procedural, imperative, and structured programming language. Originally intended for writing compilers for other languages, BCPL is no longer in common use. However, its influence is still felt because a stripped down and syntactically changed version of BCPL, called B, was the language on which the C programming language was based. BCPL introduced several features of many modern programming languages, including using curly braces to delimit code blocks. BCPL was first implemented by Martin Richards of the University of Cambridge in 1967.

In computing, a compiler is a computer program that translates computer code written in one programming language into another language. The name "compiler" is primarily used for programs that translate source code from a high-level programming language to a low-level programming language to create an executable program.

<span class="mw-page-title-main">Commodore 64</span> 8-bit home computer introduced in 1982

The Commodore 64, also known as the C64, is an 8-bit home computer introduced in January 1982 by Commodore International. It has been listed in the Guinness World Records as the highest-selling single computer model of all time, with independent estimates placing the number sold between 12.5 and 17 million units. Volume production started in early 1982, marketing in August for US$595. Preceded by the VIC-20 and Commodore PET, the C64 took its name from its 64 kilobytes(65,536 bytes) of RAM. With support for multicolor sprites and a custom chip for waveform generation, the C64 could create superior visuals and audio compared to systems without such custom hardware.

In computing, a virtual machine (VM) is the virtualization or emulation of a computer system. Virtual machines are based on computer architectures and provide the functionality of a physical computer. Their implementations may involve specialized hardware, software, or a combination of the two. Virtual machines differ and are organized by their function, shown here:

<span class="mw-page-title-main">Interpreter (computing)</span> Program that executes source code without a separate compilation step

In computer science, an interpreter is a computer program that directly executes instructions written in a programming or scripting language, without requiring them previously to have been compiled into a machine language program. An interpreter generally uses one of the following strategies for program execution:

  1. Parse the source code and perform its behavior directly;
  2. Translate source code into some efficient intermediate representation or object code and immediately execute that;
  3. Explicitly execute stored precompiled bytecode made by a compiler and matched with the interpreter's Virtual Machine.

In computing, cross-platform software is computer software that is designed to work in several computing platforms. Some cross-platform software requires a separate build for each platform, but some can be directly run on any platform without special preparation, being written in an interpreted language or compiled to portable bytecode for which the interpreters or run-time packages are common or standard components of all supported platforms.

Bytecode is a form of instruction set designed for efficient execution by a software interpreter. Unlike human-readable source code, bytecodes are compact numeric codes, constants, and references that encode the result of compiler parsing and performing semantic analysis of things like type, scope, and nesting depths of program objects.

<span class="mw-page-title-main">MAME</span> Arcade game emulation software

MAME is a free and open-source emulator designed to recreate the hardware of arcade game systems in software on modern personal computers and other platforms. Its intention is to preserve gaming history by preventing vintage games from being lost or forgotten. It does this by emulating the inner workings of the emulated arcade machines; the ability to actually play the games is considered "a nice side effect". Joystiq has listed MAME as an application that every Windows and Mac gamer should have.

<span class="mw-page-title-main">TI-99/4A</span> Home computer by Texas Instruments

The TI-99/4 and TI-99/4A are home computers released by Texas Instruments in 1979 and 1981, respectively. The TI-99 series competed against home computers such as the Apple II, TRS-80, Atari 400/800, and VIC-20.

Multi Emulator Super System (MESS) is an emulator for various consoles and computer systems, based on the MAME core. It used to be a standalone program, but is now integrated into MAME. MESS emulates portable and console gaming systems, computer platforms, and calculators. The project strives for accuracy and portability and therefore is not always the fastest emulator for any one particular system. Its accuracy makes it also useful for homebrew game development.

A dedicated console is a video game console that is limited to one or more built-in video game or games, and is not equipped for additional games that are distributed via ROM cartridges, discs, downloads or other digital media. Dedicated consoles were very popular in the first generation of video game consoles until they were gradually replaced by second-generation video game consoles that use ROM cartridges.

In video gaming parlance, a conversion is the production of a game on one computer or console that was originally written for another system. Over the years, video game conversion has taken form in a number of different ways, both in their style and the method in which they were converted.

Machine-dependent software is software that runs only on a specific computer. Applications that run on multiple computer architectures are called machine-independent, or cross-platform. Many organisations opt for such software because they believe that machine-dependent software is an asset and will attract more buyers. Organizations that want application software to work on heterogeneous computers may port that software to the other machines. Deploying machine-dependent applications on such architectures, such applications require porting. This procedure includes composing, or re-composing, the application's code to suit the target platform.

Atari Program Exchange (APX) was a division of Atari, Inc. that sold software via mail-order for the Atari 8-bit family of home computers from 1981 until 1984. Quarterly APX catalogs were sent to all registered Atari 8-bit owners. APX encouraged any programmer, not just professionals, to submit video games, educational software, applications, and utilities. If selected, a program was added to the catalog with credit given to the programmer. The top submissions of the quarter in each category were recognized. One program each year received the top honor: the Atari Star award. Several APX titles, such as Eastern Front (1941), Caverns of Mars, and Atari Star winner Typo Attack, were moved to Atari's official product line. A few internally developed Atari products were sold through APX, such as Atari Pascal and the developer handbook De Re Atari.

<span class="mw-page-title-main">Emulator</span> System allowing a device to imitate another

In computing, an emulator is hardware or software that enables one computer system to behave like another computer system. An emulator typically enables the host system to run software or use peripheral devices designed for the guest system. Emulation refers to the ability of a computer program in an electronic device to emulate another program or device.

Atari System refers to two arcade system boards introduced in 1984 for use in various arcade games from Atari Games. Two versions of the board were released, Atari System 1 and Atari System 2.

References

  1. Whitten, D.E.; Demaine, P.A.D. (March 1975). "A machine and configuration independent Fortran: Portable Fortran". IEEE Transactions on Software Engineering. SE-1 (1): 111–124. doi:10.1109/TSE.1975.6312825. S2CID   16485156.
  2. "Portability Issues". .. discusses .. portability of .. Fortran
  3. "port, v.2" . Oxford English Dictionary (OED Online). Oxford University Press. Retrieved December 21, 2017. Origin: Of multiple origins. Partly a borrowing from French. Partly a borrowing from Latin. Etymons: French porter; Latin portāre. ... 1. trans. To carry, bear, or convey; to bring.
  4. Tanenbaum 1984 , p. 3. §1.1 Languages,Levels, and Virtual Machines describes the terms and their relations.
  5. Tanenbaum 1984 , p. 2. Ch. 1 Introduction explains translation and interpretation.
  6. Richards & Whitby-Strevens 1984 , p. 124. §7.1 Introduction explains compiler portability using intermediate code.
  7. Richards & Whitby-Strevens 1984 , p. 133. §7.4 The bootstrapping process and INTCODE explains the role of the INTCODE interpreter.
  8. Richards & Whitby-Strevens 1984 , p. 136. §7.4.3 Example gives an example translation of a BCPL program into INTCODE for the interpreter.
  9. Wolf, Mark J. P. (2008). "Glossary". The Video Game Explosion: A History from PONG to Playstation and Beyond. Bloomsbury Academic. p. 315. ISBN   978-0-313-33868-7.
  10. 1 2 3 Grabarczyk, Pawel; Aarseth, Espen (2019), Port or conversion? An ontological framework for classifying game versions | DiGRA Conference 2019
  11. Nicoll, Benjamin (2015). "Bridging the Gap: The Neo Geo, the Media Imaginary, and the Domestication of Arcade Games". Games and Culture. doi:10.1177/1555412015590048. S2CID   147981978.
  12. 1 2 Bunten, Dan (December 1984). "Dispatches / Insights From the Strategy Game Design Front". Computer Gaming World. p. 40. Retrieved 31 October 2013.
  13. 1 2 "The CGW Computer Game Conference". Computer Gaming World (panel discussion). October 1984. p. 30. Retrieved 31 October 2013.
  14. Dunnington, Benn; Brown, Mark R.; Malcolm, Tom (January–February 1987). "64/128 Gallery". Info. pp. 14–21.
  15. Stanton, Jeffrey; Wells, Robert P.; Rochowansky, Sandra; Mellid, Michael, eds. (1984). The Addison-Wesley Book of Atari Software. Addison-Wesley. pp. 12, 21, 44, 126. ISBN   0-201-16454-X.
  16. Bernstein, Harvey (May 1985). "Beyond Castle Wolfenstein". Antic. p. 83. Retrieved 8 January 2015.
  17. Bunten, Dan. "The Game Collection". Ozark Softscape M.U.L.E. Retrieved 2017-10-04.
  18. Yakal, Kathy (June 1986). "The Evolution of Commodore Graphics". Compute!'s Gazette. pp. 34–42. Retrieved 2019-06-18.
  19. Kent, Steven (2001). Ultimate History of Video Games . Three Rivers Press. p. 190. ISBN   0-7615-3643-4.
  20. Kent, Steven (2001). "The Fall". The Ultimate History of Video Games. Three Rivers Press. pp. 237–239. ISBN   978-0-7615-3643-7.