This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations .(December 2024) |
In mathematics, logic and computer science, a formal language is called recursively enumerable (also recognizable, partially decidable, semidecidable, Turing-acceptable or Turing-recognizable) if it is a recursively enumerable subset in the set of all possible words over the alphabet of the language, i.e., if there exists a Turing machine which will enumerate all valid strings of the language.
Recursively enumerable languages are known as type-0 languages in the Chomsky hierarchy of formal languages. All regular, context-free, context-sensitive and recursive languages are recursively enumerable.
The class of all recursively enumerable languages is called RE .
There are three equivalent definitions of a recursively enumerable language:
All regular, context-free, context-sensitive and recursive languages are recursively enumerable.
Post's theorem shows that RE , together with its complement co-RE, correspond to the first level of the arithmetical hierarchy.
The set of halting Turing machines is recursively enumerable but not recursive. Indeed, one can run the Turing machine and accept if the machine halts, hence it is recursively enumerable. On the other hand, the problem is undecidable.
Some other recursively enumerable languages that are not recursive include:
Recursively enumerable languages (REL) are closed under the following operations. That is, if L and P are two recursively enumerable languages, then the following languages are recursively enumerable as well:
Recursively enumerable languages are not closed under set difference or complementation. The set difference is recursively enumerable if is recursive. If is recursively enumerable, then the complement of is recursively enumerable if and only if is also recursive.
The Chomsky hierarchy in the fields of formal language theory, computer science, and linguistics, is a containment hierarchy of classes of formal grammars. A formal grammar describes how to form strings from a language's vocabulary that are valid according to the language's syntax. The linguist Noam Chomsky theorized that four different classes of formal grammars existed that could generate increasingly complex languages. Each class can also completely generate the language of all inferior classes.
In the computer science subfield of algorithmic information theory, a Chaitin constant or halting probability is a real number that, informally speaking, represents the probability that a randomly constructed program will halt. These numbers are formed from a construction due to Gregory Chaitin.
In formal language theory, a context-sensitive language is a language that can be defined by a context-sensitive grammar. Context-sensitive is known as type-1 in the Chomsky hierarchy of formal languages.
In logic, mathematics, computer science, and linguistics, a formal language consists of words whose letters are taken from an alphabet and are well-formed according to a specific set of rules called a formal grammar.
In complexity theory and computability theory, an oracle machine is an abstract machine used to study decision problems. It can be visualized as a Turing machine with a black box, called an oracle, which is able to solve certain problems in a single operation. The problem can be of any complexity class. Even undecidable problems, such as the halting problem, can be used.
In theoretical computer science and mathematics, the theory of computation is the branch that deals with what problems can be solved on a model of computation, using an algorithm, how efficiently they can be solved or to what degree. The field is divided into three major branches: automata theory and formal languages, computability theory, and computational complexity theory, which are linked by the question: "What are the fundamental capabilities and limitations of computers?".
In mathematical logic, the arithmetical hierarchy, arithmetic hierarchy or Kleene–Mostowski hierarchy classifies certain sets based on the complexity of formulas that define them. Any set that receives a classification is called arithmetical. The arithmetical hierarchy was invented independently by Kleene (1943) and Mostowski (1946).
In computability theory, a set S of natural numbers is called computably enumerable (c.e.), recursively enumerable (r.e.), semidecidable, partially decidable, listable, provable or Turing-recognizable if:
In computability theory, a set of natural numbers is called computable, recursive, or decidable if there is an algorithm which takes a number as input, terminates after a finite amount of time and correctly decides whether the number belongs to the set or not.
In computability theory and computational complexity theory, a many-one reduction is a reduction that converts instances of one decision problem to another decision problem using a computable function. The reduced instance is in the language if and only if the initial instance is in its language . Thus if we can decide whether instances are in the language , we can decide whether instances are in its language by applying the reduction and solving for . Thus, reductions can be used to measure the relative computational difficulty of two problems. It is said that reduces to if, in layman's terms is at least as hard to solve as . This means that any algorithm that solves can also be used as part of a program that solves .
Computability is the ability to solve a problem in an effective manner. It is a key topic of the field of computability theory within mathematical logic and the theory of computation within computer science. The computability of a problem is closely linked to the existence of an algorithm to solve the problem.
In computational complexity theory, a complexity class is a set of computational problems "of related resource-based complexity". The two most commonly analyzed resources are time and memory.
Computable functions are the basic objects of study in computability theory. Computable functions are the formalized analogue of the intuitive notion of algorithms, in the sense that a function is computable if there exists an algorithm that can do the job of the function, i.e. given an input of the function domain it can return the corresponding output. Computable functions are used to discuss computability without referring to any concrete model of computation such as Turing machines or register machines. Any definition, however, must make reference to some specific model of computation but all valid definitions yield the same class of functions. Particular models of computability that give rise to the set of computable functions are the Turing-computable functions and the general recursive functions.
In computability theory, a decider is a Turing machine that halts for every input. A decider is also called a total Turing machine as it represents a total function.
In theoretical computer science and mathematical logic a string rewriting system (SRS), historically called a semi-Thue system, is a rewriting system over strings from a alphabet. Given a binary relation between fixed strings over the alphabet, called rewrite rules, denoted by , an SRS extends the rewriting relation to all strings in which the left- and right-hand side of the rules appear as substrings, that is , where , , , and are strings.
In computability theory and computational complexity theory, RE is the class of decision problems for which a 'yes' answer can be verified by a Turing machine in a finite amount of time. Informally, it means that if the answer to a problem instance is 'yes', then there is some procedure that takes finite time to determine this, and this procedure never falsely reports 'yes' when the true answer is 'no'. However, when the true answer is 'no', the procedure is not required to halt; it may go into an "infinite loop" for some 'no' cases. Such a procedure is sometimes called a semi-algorithm, to distinguish it from an algorithm, defined as a complete solution to a decision problem.
In automata theory, the class of unrestricted grammars is the most general class of grammars in the Chomsky hierarchy. No restrictions are made on the productions of an unrestricted grammar, other than each of their left-hand sides being non-empty. This grammar class can generate arbitrary recursively enumerable languages.
In computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever. The halting problem is undecidable, meaning that no general algorithm exists that solves the halting problem for all possible program–input pairs. The problem comes up often in discussions of computability since it demonstrates that some functions are mathematically definable but not computable.
In mathematics, logic and computer science, a formal language is called recursive if it is a recursive subset of the set of all possible finite sequences over the alphabet of the language. Equivalently, a formal language is recursive if there exists a Turing machine that, when given a finite sequence of symbols as input, always halts and accepts it if it belongs to the language and halts and rejects it otherwise. In Theoretical computer science, such always-halting Turing machines are called total Turing machines or algorithms. Recursive languages are also called decidable.
An enumerator is a Turing machine with an attached printer. The Turing machine can use that printer as an output device to print strings. Every time the Turing machine wants to add a string to the list, it sends the string to the printer. Enumerator is a type of Turing machine variant and is equivalent with Turing machine.