In computer science, string-searching algorithms, sometimes called string-matching algorithms, are an important class of string algorithms that try to find a place where one or several strings (also called patterns) are found within a larger string or text.
A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet (finite set) Σ. Σ may be a human language alphabet, for example, the letters A through Z and other applications may use a binary alphabet (Σ = {0,1}) or a DNA alphabet (Σ = {A,C,G,T}) in bioinformatics.
In practice, the method of feasible string-search algorithm may be affected by the string encoding. In particular, if a variable-width encoding is in use, then it may be slower to find the Nth character, perhaps requiring time proportional to N. This may significantly slow some search algorithms. One of many possible solutions is to search for the sequence of code units instead, but doing so may produce false matches unless the encoding is specifically designed to avoid it.[ citation needed ]
The most basic case of string searching involves one (often very long) string, sometimes called the haystack, and one (often very short) string, sometimes called the needle. The goal is to find one or more occurrences of the needle within the haystack. For example, one might search for to within:
Some books are to be tasted, others to be swallowed, and some few to be chewed and digested.
One might request the first occurrence of "to", which is the fourth word; or all occurrences, of which there are 3; or the last, which is the fifth word from the end.
Very commonly, however, various constraints are added. For example, one might want to match the "needle" only where it consists of one (or more) complete words—perhaps defined as not having other letters immediately adjacent on either side. In that case a search for "hew" or "low" should fail for the example sentence above, even though those literal strings do occur.
Another common example involves "normalization". For many purposes, a search for a phrase such as "to be" should succeed even in places where there is something else intervening between the "to" and the "be":
Many symbol systems include characters that are synonymous (at least for some purposes):
Finally, for strings that represent natural language, aspects of the language itself become involved. For example, one might wish to find all occurrences of a "word" despite it having alternate spellings, prefixes or suffixes, etc.
Another more complex type of search is regular expression searching, where the user constructs a pattern of characters or other symbols, and any match to the pattern should fulfill the search. For example, to catch both the American English word "color" and the British equivalent "colour", instead of searching for two different literal strings, one might use a regular expression such as:
colou?r
where the "?" conventionally makes the preceding character ("u") optional.
This article mainly discusses algorithms for the simpler kinds of string searching.
A similar problem introduced in the field of bioinformatics and genomics is the maximal exact matching (MEM). [1] Given two strings, MEMs are common substrings that cannot be extended left or right without causing a mismatch. [2]
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth. In the normal case, we only have to look at one or two characters for each wrong position to see that it is a wrong position, so in the average case, this takes O(n + m) steps, where n is the length of the haystack and m is the length of the needle; but in the worst case, searching for a string like "aaaab" in a string like "aaaaaaaaab", it takes O(nm)
In this approach, backtracking is avoided by constructing a deterministic finite automaton (DFA) that recognizes a stored search string. These are expensive to construct—they are usually created using the powerset construction—but are very quick to use. For example, the DFA shown to the right recognizes the word "MOMMY". This approach is frequently generalized in practice to search for arbitrary regular expressions.
Knuth–Morris–Pratt computes a DFA that recognizes inputs with the string to search for as a suffix, Boyer–Moore starts searching from the end of the needle, so it can usually jump ahead a whole needle-length at each step. Baeza–Yates keeps track of whether the previous j characters were a prefix of the search string, and is therefore adaptable to fuzzy string searching. The bitap algorithm is an application of Baeza–Yates' approach.
Faster search algorithms preprocess the text. After building a substring index, for example a suffix tree or suffix array, the occurrences of a pattern can be found quickly. As an example, a suffix tree can be built in time, and all occurrences of a pattern can be found in time under the assumption that the alphabet has a constant size and all inner nodes in the suffix tree know what leaves are underneath them. The latter can be accomplished by running a DFS algorithm from the root of the suffix tree.
Some search methods, for instance trigram search, are intended to find a "closeness" score between the search string and the text rather than a "match/non-match". These are sometimes called "fuzzy" searches.
The various algorithms can be classified by the number of patterns each uses.
In the following compilation, m is the length of the pattern, n the length of the searchable text, and k = |Σ| is the size of the alphabet.
Algorithm | Preprocessing time | Matching time | Space |
---|---|---|---|
Naïve algorithm | none | Θ(n+m) in average, Θ(mn) | none |
Rabin–Karp | Θ(m) | Θ(n) in average, O(mn) at worst | O(1) |
Knuth–Morris–Pratt | Θ(m) | Θ(n) | Θ(m) |
Boyer–Moore | Θ(m + k) | Ω(n/m) at best, O(mn) at worst | Θ(k) |
Two-way algorithm [3] | Θ(m) | O(n) | O(log(m)) |
Backward Non-Deterministic DAWG Matching (BNDM) [4] | O(m) | Ω(n/m) at best, O(mn) at worst | |
Backward Oracle Matching (BOM) [5] | O(m) | O(mn) |
The Boyer–Moore string-search algorithm has been the standard benchmark for the practical string-search literature. [8]
In the following compilation, M is the length of the longest pattern, m their total length, n the length of the searchable text, o the number of occurrences.
Algorithm | Extension of | Preprocessing time | Matching time | Space |
---|---|---|---|---|
Aho–Corasick | Knuth–Morris–Pratt | Θ(m) | Θ(n + o) | Θ(m) |
Commentz-Walter | Boyer-Moore | Θ(m) | Θ(M * n) worst case sublinear in average [9] | Θ(m) |
Set-BOM | Backward Oracle Matching |
Naturally, the patterns can not be enumerated finitely in this case. They are represented usually by a regular grammar or regular expression.
Other classification approaches are possible. One of the most common uses preprocessing as main criteria.
Text not preprocessed | Text preprocessed | |
---|---|---|
Patterns not preprocessed | Elementary algorithms | Index methods |
Patterns preprocessed | Constructed search engines | Signature methods : [11] |
Another one classifies the algorithms by their matching strategy: [12]
A regular expression, sometimes referred to as rational expression, is a sequence of characters that specifies a match pattern in text. Usually such patterns are used by string-searching algorithms for "find" or "find and replace" operations on strings, or for input validation. Regular expression techniques are developed in theoretical computer science and formal language theory.
In computer programming, a string is traditionally a sequence of characters, either as a literal constant or as some kind of variable. The latter may allow its elements to be mutated and the length changed, or it may be fixed. A string is generally considered as a data type and is often implemented as an array data structure of bytes that stores a sequence of elements, typically characters, using some character encoding. String may also denote more general arrays or other sequence data types and structures.
In computer science, a trie, also called digital tree or prefix tree, is a type of k-ary search tree, a tree data structure used for locating specific keys from within a set. These keys are most often strings, with links between nodes defined not by the entire key, but by individual characters. In order to access a key, the trie is traversed depth-first, following the links between nodes, which represent each character in the key.
The Burrows–Wheeler transform rearranges a character string into runs of similar characters. This is useful for compression, since it tends to be easy to compress a string that has runs of repeated characters by techniques such as move-to-front transform and run-length encoding. More importantly, the transformation is reversible, without needing to store any additional data except the position of the first original character. The BWT is thus a "free" method of improving the efficiency of text compression algorithms, costing only some extra computation. The Burrows–Wheeler transform is an algorithm used to prepare data for use with data compression techniques such as bzip2. It was invented by Michael Burrows and David Wheeler in 1994 while Burrows was working at DEC Systems Research Center in Palo Alto, California. It is based on a previously unpublished transformation discovered by Wheeler in 1983. The algorithm can be implemented efficiently using a suffix array thus reaching linear time complexity.
In computer science, the Aho—Corasick algorithm is a string-searching algorithm invented by Alfred V. Aho and Margaret J. Corasick in 1975. It is a kind of dictionary-matching algorithm that locates elements of a finite set of strings within an input text. It matches all strings simultaneously. The complexity of the algorithm is linear in the length of the strings plus the length of the searched text plus the number of output matches. Note that because all matches are found, there can be a quadratic number of matches if every substring matches.
In computer science, the Knuth–Morris–Pratt algorithm is a string-searching algorithm that searches for occurrences of a "word" W
within a main "text string" S
by employing the observation that when a mismatch occurs, the word itself embodies sufficient information to determine where the next match could begin, thus bypassing re-examination of previously matched characters.
In computational linguistics and computer science, edit distance is a string metric, i.e. a way of quantifying how dissimilar two strings are to one another, that is measured by counting the minimum number of operations required to transform one string into the other. Edit distances find applications in natural language processing, where automatic spelling correction can determine candidate corrections for a misspelled word by selecting words from a dictionary that have a low distance to the word in question. In bioinformatics, it can be used to quantify the similarity of DNA sequences, which can be viewed as strings of the letters A, C, G and T.
In biology, a sequence motif is a nucleotide or amino-acid sequence pattern that is widespread and usually assumed to be related to biological function of the macromolecule. For example, an N-glycosylation site motif can be defined as Asn, followed by anything but Pro, followed by either Ser or Thr, followed by anything but Pro residue.
In computer science, the Rabin–Karp algorithm or Karp–Rabin algorithm is a string-searching algorithm created by Richard M. Karp and Michael O. Rabin that uses hashing to find an exact match of a pattern string in a text. It uses a rolling hash to quickly filter out positions of the text that cannot match the pattern, and then checks for a match at the remaining positions. Generalizations of the same idea can be used to find more than one match of a single pattern, or to find matches for more than one pattern.
In computer science, the Boyer–Moore string-search algorithm is an efficient string-searching algorithm that is the standard benchmark for practical string-search literature. It was developed by Robert S. Boyer and J Strother Moore in 1977. The original paper contained static tables for computing the pattern shifts without an explanation of how to produce them. The algorithm for producing the tables was published in a follow-on paper; this paper contained errors which were later corrected by Wojciech Rytter in 1980.
In computer science, a suffix tree is a compressed trie containing all the suffixes of the given text as their keys and positions in the text as their values. Suffix trees allow particularly fast implementations of many important string operations.
In computer science, a suffix array is a sorted array of all suffixes of a string. It is a data structure used in, among others, full-text indices, data-compression algorithms, and the field of bibliometrics.
In computer science, the Boyer–Moore–Horspool algorithm or Horspool's algorithm is an algorithm for finding substrings in strings. It was published by Nigel Horspool in 1980 as SBM.
In computer science, approximate string matching is the technique of finding strings that match a pattern approximately. The problem of approximate string matching is typically divided into two sub-problems: finding approximate substring matches inside a given string and finding dictionary strings that match the pattern approximately.
In computer science, the Apostolico–Giancarlo algorithm is a variant of the Boyer–Moore string-search algorithm, the basic application of which is searching for occurrences of a pattern in a text . As with other comparison-based string searches, this is done by aligning to a certain index of and checking whether a match occurs at that index. is then shifted relative to according to the rules of the Boyer–Moore algorithm, and the process repeats until the end of has been reached. Application of the Boyer–Moore shift rules often results in large chunks of the text being skipped entirely.
In computer science, compressed pattern matching is the process of searching for patterns in compressed data with little or no decompression. Searching in a compressed string is faster than searching an uncompressed string and requires less space.
In computer science, an FM-index is a compressed full-text substring index based on the Burrows–Wheeler transform, with some similarities to the suffix array. It was created by Paolo Ferragina and Giovanni Manzini, who describe it as an opportunistic data structure as it allows compression of the input text while still permitting fast substring queries. The name stands for Full-text index in Minute space.
In computer science, a compressed suffix array is a compressed data structure for pattern matching. Compressed suffix arrays are a general class of data structure that improve on the suffix array. These data structures enable quick search for an arbitrary string with a comparatively small index.
In machine learning and data mining, a string kernel is a kernel function that operates on strings, i.e. finite sequences of symbols that need not be of the same length. String kernels can be intuitively understood as functions measuring the similarity of pairs of strings: the more similar two strings a and b are, the higher the value of a string kernel K(a, b) will be.
In computer science, the two-way string-matching algorithm is a string-searching algorithm, discovered by Maxime Crochemore and Dominique Perrin in 1991. It takes a pattern of size m, called a “needle”, preprocesses it in linear time O(m), producing information that can then be used to search for the needle in any “haystack” string, taking only linear time O(n) with n being the haystack's length.
{{citation}}
: External link in |surname2=
(help)CS1 maint: numeric names: authors list (link)