Social dynamics

Last updated

Social dynamics (or sociodynamics) is the study of the behavior of groups and of the interactions of individual group members, aiming to understand the emergence of complex social behaviors among microorganisms, plants and animals, including humans. It is related to sociobiology but also draws from physics and complex system sciences. In the last century, sociodynamics was viewed as part of psychology, as shown in the work: "Sociodynamics: an integrative theorem of power, authority, interfluence and love". [1] In the 1990s, social dynamics began being viewed as a separate scientific discipline[By whom?]. An important paper in this respect is: "The Laws of Sociodynamics". [2] Then, starting in the 2000s, sociodynamics took off as a discipline of its own, many papers were released in the field in this decade.

Overview

The field of social dynamics brings together ideas from economics, sociology, social psychology, and other disciplines, and is a sub-field of complex adaptive systems or complexity science. The fundamental assumption of the field is that individuals are influenced by one another's behavior. The field is closely related to system dynamics. Like system dynamics, social dynamics is concerned with changes over time and emphasizes the role of feedbacks. However, in social dynamics individual choices and interactions are typically viewed as the source of aggregate level behavior, while system dynamics posits that the structure of feedbacks and accumulations are responsible for system level dynamics. [3] Research in the field typically takes a behavioral approach, assuming that individuals are boundedly rational and act on local information. Mathematical and computational modeling are important tools for studying social dynamics. This field grew out of work done in the 1940s by game theorists such as Duncan & Luce, and even earlier works by mathematician Armand Borel. [4] Because social dynamics focuses on individual level behavior, and recognizes the importance of heterogeneity across individuals, strict analytic results are often impossible. Instead, approximation techniques, such as mean-field approximations from statistical physics, or computer simulations are used to understand the behaviors of the system. In contrast to more traditional approaches in economics, scholars of social dynamics are often interested in non-equilibrium, or dynamic, behavior. [5] [6] That is, behavior that changes over time.

Topics

See also

Notes

  1. E. Bannester, Michael (1969). "Sociodynamics: An Integrative Theorem of Power, Authority, Interfluence and Love". American Sociological Review. 34 (3): 374–393. doi:10.2307/2092502. ISSN   0003-1224.
  2. E. Koshland, Daniel (27 July 1990). "The Laws of Sociodynamics". Science. 249 (4967): 341–341. doi:10.1126/science.249.4967.341. ISSN   0036-8075.
  3. Sterman, John (2000). Business Dynamics . McGraw Hill. ISBN   0-07-231135-5.
  4. Luce, Duncan (1957). Games and Decisions . John Wiley & Sons, Inc. ISBN   0486659437.
  5. Durlauf, Steven; Young, Peyton (2001). Social Dynamics. Cambridge, MA: MIT Press. ISBN   0-262-04186-3.
  6. "Brookings Institution, Center for Social Dynamics and Policy" . Retrieved 29 September 2012.

Related Research Articles

Complexity characterises the behaviour of a system or model whose components interact in multiple ways and follow local rules, leading to non-linearity, randomness, collective dynamics, hierarchy, and emergence.

Sociobiology is a field of biology that aims to explain social behavior in terms of evolution. It draws from disciplines including psychology, ethology, anthropology, evolution, zoology, archaeology, and population genetics. Within the study of human societies, sociobiology is closely allied to evolutionary anthropology, human behavioral ecology, evolutionary psychology, and sociology.

<span class="mw-page-title-main">Outline of sociology</span> Overview of and topical guide to sociology

The following outline is provided as an overview of and topical guide to the discipline of sociology:

Systems theory is the transdisciplinary study of systems, i.e. cohesive groups of interrelated, interdependent components that can be natural or artificial. Every system has causal boundaries, is influenced by its context, defined by its structure, function and role, and expressed through its relations with other systems. A system is "more than the sum of its parts" when it expresses synergy or emergent behavior.

A complex system is a system composed of many components which may interact with each other. Examples of complex systems are Earth's global climate, organisms, the human brain, infrastructure such as power grid, transportation or communication systems, complex software and electronic systems, social and economic organizations, an ecosystem, a living cell, and, ultimately, for some authors, the entire universe.

The New England Complex Systems Institute (NECSI) is an independent American research institution and think tank dedicated to advancing analytics and its application to the challenges of society, and the interaction of complex systems with the environment. NECSI offers educational programs, conducts research, and hosts the International Conference on Complex Systems. It was founded in 1996 and is located in Cambridge, Massachusetts.

<span class="mw-page-title-main">Systems science</span> Study of the nature of systems

Systems Science, also referred to as systems research, or, simply, systems, is a transdisciplinary field that is concerned with understanding simple and complex systems in nature and society, which leads to the advancements of formal, natural, social, and applied attributions throughout engineering, technology and science, itself.

<span class="mw-page-title-main">Computational sociology</span> Branch of the discipline of sociology

Computational sociology is a branch of sociology that uses computationally intensive methods to analyze and model social phenomena. Using computer simulations, artificial intelligence, complex statistical methods, and analytic approaches like social network analysis, computational sociology develops and tests theories of complex social processes through bottom-up modeling of social interactions.

<span class="mw-page-title-main">Dynamical systems theory</span> Area of mathematics used to describe the behavior of complex dynamical systems

Dynamical systems theory is an area of mathematics used to describe the behavior of complex dynamical systems, usually by employing differential equations or difference equations. When differential equations are employed, the theory is called continuous dynamical systems. From a physical point of view, continuous dynamical systems is a generalization of classical mechanics, a generalization where the equations of motion are postulated directly and are not constrained to be Euler–Lagrange equations of a least action principle. When difference equations are employed, the theory is called discrete dynamical systems. When the time variable runs over a set that is discrete over some intervals and continuous over other intervals or is any arbitrary time-set such as a Cantor set, one gets dynamic equations on time scales. Some situations may also be modeled by mixed operators, such as differential-difference equations.

<span class="mw-page-title-main">Generative science</span> Study of how complex behaviour can be generated by deterministic and finite rules and parameters

Generative science is an area of research that explores the natural world and its complex behaviours. It explores ways "to generate apparently unanticipated and infinite behaviour based on deterministic and finite rules and parameters reproducing or resembling the behavior of natural and social phenomena". By modelling such interactions, it can suggest that properties exist in the system that had not been noticed in the real world situation. An example field of study is how unintended consequences arise in social processes.

A complex adaptive system is a system that is complex in that it is a dynamic network of interactions, but the behavior of the ensemble may not be predictable according to the behavior of the components. It is adaptive in that the individual and collective behavior mutate and self-organize corresponding to the change-initiating micro-event or collection of events. It is a "complex macroscopic collection" of relatively "similar and partially connected micro-structures" formed in order to adapt to the changing environment and increase their survivability as a macro-structure. The Complex Adaptive Systems approach builds on replicator dynamics.

The behavioural sciences explore the cognitive processes within organisms and the behavioural interactions between organisms in the natural world. It involves the systematic analysis and investigation of human and animal behaviour through naturalistic observation, controlled scientific experimentation and mathematical modeling. It attempts to accomplish legitimate, objective conclusions through rigorous formulations and observation. Examples of behavioural sciences include psychology, psychobiology, criminology, anthropology, sociology, economics, and cognitive science. Generally, behavioural science primarily seeks to generalise about human behaviour as it relates to society and its impact on society as a whole.

Mathematical psychology is an approach to psychological research that is based on mathematical modeling of perceptual, thought, cognitive and motor processes, and on the establishment of law-like rules that relate quantifiable stimulus characteristics with quantifiable behavior. The mathematical approach is used with the goal of deriving hypotheses that are more exact and thus yield stricter empirical validations. There are five major research areas in mathematical psychology: learning and memory, perception and psychophysics, choice and decision-making, language and thinking, and measurement and scaling.

<span class="mw-page-title-main">Douglas R. White</span> Social scientist

Douglas R. White was an American complexity researcher, social anthropologist, sociologist, and social network researcher at the University of California, Irvine.

<span class="mw-page-title-main">Cybernetics</span> Transdisciplinary field concerned with regulatory and purposive systems

Cybernetics is a field of systems theory that studies circular causal systems whose outputs are also inputs, such as feedback systems. It is concerned with the general principles of circular causal processes, including in ecological, technological, biological, cognitive and social systems and also in the context of practical activities such as designing, learning, and managing.

The history of evolutionary psychology began with Charles Darwin, who said that humans have social instincts that evolved by natural selection. Darwin's work inspired later psychologists such as William James and Sigmund Freud but for most of the 20th century psychologists focused more on behaviorism and proximate explanations for human behavior. E. O. Wilson's landmark 1975 book, Sociobiology, synthesized recent theoretical advances in evolutionary theory to explain social behavior in animals, including humans. Jerome Barkow, Leda Cosmides and John Tooby popularized the term "evolutionary psychology" in their 1992 book The Adapted Mind: Evolutionary Psychology and The Generation of Culture. Like sociobiology before it, evolutionary psychology has been embroiled in controversy, but evolutionary psychologists see their field as gaining increased acceptance overall.

A social-ecological system consists of 'a bio-geo-physical' unit and its associated social actors and institutions. Social-ecological systems are complex and adaptive and delimited by spatial or functional boundaries surrounding particular ecosystems and their context problems.

Neuropolitics is a science which investigates the interplay between the brain and politics. It combines work from a variety of scientific fields which includes neuroscience, political science, psychology, behavioral genetics, primatology, and ethology. Often, neuropolitics research borrow methods from cognitive neuroscience to investigate classic questions from political science such as how people make political decisions, form political / ideological attitudes, evaluate political candidates, and interact in political coalitions. However, another line of research considers the role that evolving political competition has had on the development of the brain in humans and other species. The research in neuropolitics often intersects with work in genopolitics, political psychology, political physiology, sociobiology, neuroeconomics, and neurolaw.

Evolutionary psychology has traditionally focused on individual-level behaviors, determined by species-typical psychological adaptations. Considerable work, though, has been done on how these adaptations shape and, ultimately govern, culture. Tooby and Cosmides (1989) argued that the mind consists of many domain-specific psychological adaptations, some of which may constrain what cultural material is learned or taught. As opposed to a domain-general cultural acquisition program, where an individual passively receives culturally-transmitted material from the group, Tooby and Cosmides (1989), among others, argue that: "the psyche evolved to generate adaptive rather than repetitive behavior, and hence critically analyzes the behavior of those surrounding it in highly structured and patterned ways, to be used as a rich source of information out of which to construct a 'private culture' or individually tailored adaptive system; in consequence, this system may or may not mirror the behavior of others in any given respect.".

References

Further reading