Subtangent

Last updated
Subtangent and related concepts for a curve (black) at a given point P. The tangent and normal lines are shown in green and blue respectively. The distances shown are the ordinate (AP), tangent (TP), subtangent (TA), normal (PN), and subnormal (AN). The angle ph is the angle of inclination of the tangent line or the tangential angle. SubtangentDiagram.svg
Subtangent and related concepts for a curve (black) at a given point P. The tangent and normal lines are shown in green and blue respectively. The distances shown are the ordinate (AP), tangent (TP), subtangent (TA), normal (PN), and subnormal (AN). The angle φ is the angle of inclination of the tangent line or the tangential angle.

In geometry, the subtangent and related terms are certain line segments defined using the line tangent to a curve at a given point and the coordinate axes. The terms are somewhat archaic today but were in common use until the early part of the 20th century.

Contents

Definitions

Let P = (x, y) be a point on a given curve with A = (x, 0) its projection onto the x-axis. Draw the tangent to the curve at P and let T be the point where this line intersects the x-axis. Then TA is defined to be the subtangent at P. Similarly, if normal to the curve at P intersects the x-axis at N then AN is called the subnormal. In this context, the lengths PT and PN are called the tangent and normal, not to be confused with the tangent line and the normal line which are also called the tangent and normal.

Equations

Let φ be the angle of inclination of the tangent with respect to the x-axis; this is also known as the tangential angle. Then

So the subtangent is

and the subnormal is

The normal is given by

and the tangent is given by

Polar definitions

Polar subtangent and related concepts for a curve (black) at a given point P. The tangent and normal lines are shown in green and blue respectively. The distances shown are the radius (OP), polar subtangent (OT), and polar subnormal (ON). The angle th is the radial angle and the angle ps of inclination of the tangent to the radius or the polar tangential angle. PolarSubtangentDiagram.svg
Polar subtangent and related concepts for a curve (black) at a given point P. The tangent and normal lines are shown in green and blue respectively. The distances shown are the radius (OP), polar subtangent (OT), and polar subnormal (ON). The angle θ is the radial angle and the angle ψ of inclination of the tangent to the radius or the polar tangential angle.

Let P = (r, θ) be a point on a given curve defined by polar coordinates and let O denote the origin. Draw a line through O which is perpendicular to OP and let T now be the point where this line intersects the tangent to the curve at P. Similarly, let N now be the point where the normal to the curve intersects the line. Then OT and ON are, respectively, called the polar subtangent and polar subnormal of the curve at P.

Polar equations

Let ψ be the angle between the tangent and the ray OP; this is also known as the polar tangential angle. Then

So the polar subtangent is

and the subnormal is

Related Research Articles

<span class="mw-page-title-main">Catenary</span> Curve formed by a hanging chain

In physics and geometry, a catenary is the curve that an idealized hanging chain or cable assumes under its own weight when supported only at its ends in a uniform gravitational field.

<span class="mw-page-title-main">Hyperbola</span> Plane curve: conic section

In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.

<span class="mw-page-title-main">Polar coordinate system</span> Coordinates determined by distance and angle

In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point is called the pole, and the ray from the pole in the reference direction is the polar axis. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. Angles in polar notation are generally expressed in either degrees or radians.

<span class="mw-page-title-main">Spiral</span> Curve that winds around a central point

In mathematics, a spiral is a curve which emanates from a point, moving farther away as it revolves around the point. It is a subtype of whorled patterns, a broad group that also includes concentric objects.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Fermat's spiral</span> Spiral that surrounds equal area per turn

A Fermat's spiral or parabolic spiral is a plane curve with the property that the area between any two consecutive full turns around the spiral is invariant. As a result, the distance between turns grows in inverse proportion to their distance from the spiral center, contrasting with the Archimedean spiral and the logarithmic spiral. Fermat spirals are named after Pierre de Fermat.

<span class="mw-page-title-main">Poincaré half-plane model</span> Upper-half plane model of hyperbolic non-Euclidean geometry

In non-Euclidean geometry, the Poincaré half-plane model is the upper half-plane, denoted below as H, together with a metric, the Poincaré metric, that makes it a model of two-dimensional hyperbolic geometry.

<span class="mw-page-title-main">Cardioid</span> Type of plane curve

In geometry, a cardioid is a plane curve traced by a point on the perimeter of a circle that is rolling around a fixed circle of the same radius. It can also be defined as an epicycloid having a single cusp. It is also a type of sinusoidal spiral, and an inverse curve of the parabola with the focus as the center of inversion. A cardioid can also be defined as the set of points of reflections of a fixed point on a circle through all tangents to the circle.

<span class="mw-page-title-main">Cissoid of Diocles</span> Cubic plane curve

In geometry, the cissoid of Diocles is a cubic plane curve notable for the property that it can be used to construct two mean proportionals to a given ratio. In particular, it can be used to double a cube. It can be defined as the cissoid of a circle and a line tangent to it with respect to the point on the circle opposite to the point of tangency. In fact, the curve family of cissoids is named for this example and some authors refer to it simply as the cissoid. It has a single cusp at the pole, and is symmetric about the diameter of the circle which is the line of tangency of the cusp. The line is an asymptote. It is a member of the conchoid of de Sluze family of curves and in form it resembles a tractrix.

<span class="mw-page-title-main">Pedal curve</span> Curve generated by the projections of a fixed point on the tangents of another curve

In mathematics, a pedal curve of a given curve results from the orthogonal projection of a fixed point on the tangent lines of this curve. More precisely, for a plane curve C and a given fixed pedal pointP, the pedal curve of C is the locus of points X so that the line PX is perpendicular to a tangent T to the curve passing through the point X. Conversely, at any point R on the curve C, let T be the tangent line at that point R; then there is a unique point X on the tangent T which forms with the pedal point P a line perpendicular to the tangent T – the pedal curve is the set of such points X, called the foot of the perpendicular to the tangent T from the fixed point P, as the variable point R ranges over the curve C.

<span class="mw-page-title-main">Kappa curve</span>

In geometry, the kappa curve or Gutschoven's curve is a two-dimensional algebraic curve resembling the Greek letter ϰ (kappa). The kappa curve was first studied by Gérard van Gutschoven around 1662. In the history of mathematics, it is remembered as one of the first examples of Isaac Barrow's application of rudimentary calculus methods to determine the tangent of a curve. Isaac Newton and Johann Bernoulli continued the studies of this curve subsequently.

<span class="mw-page-title-main">Tangent half-angle formula</span> Relates the tangent of half of an angle to trigonometric functions of the entire angle

In trigonometry, tangent half-angle formulas relate the tangent of half of an angle to trigonometric functions of the entire angle. The tangent of half an angle is the stereographic projection of the circle onto a line. Among these formulas are the following:

<span class="mw-page-title-main">Semicubical parabola</span> Algebraic plane curve of the form y² – a²x³ = 0

In mathematics, a cuspidal cubic or semicubical parabola is an algebraic plane curve that has an implicit equation of the form

There are several equivalent ways for defining trigonometric functions, and the proof of the trigonometric identities between them depend on the chosen definition. The oldest and somehow the most elementary definition is based on the geometry of right triangles. The proofs given in this article use this definition, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles, see Trigonometric functions.

<span class="mw-page-title-main">Whewell equation</span> Mathematical equation

The Whewell equation of a plane curve is an equation that relates the tangential angle with arclength, where the tangential angle is the angle between the tangent to the curve and the x-axis, and the arc length is the distance along the curve from a fixed point. These quantities do not depend on the coordinate system used except for the choice of the direction of the x-axis, so this is an intrinsic equation of the curve, or, less precisely, the intrinsic equation. If a curve is obtained from another by translation then their Whewell equations will be the same.

<span class="mw-page-title-main">Differentiation of trigonometric functions</span> Mathematical process of finding the derivative of a trigonometric function

The differentiation of trigonometric functions is the mathematical process of finding the derivative of a trigonometric function, or its rate of change with respect to a variable. For example, the derivative of the sine function is written sin′(a) = cos(a), meaning that the rate of change of sin(x) at a particular angle x = a is given by the cosine of that angle.

<span class="mw-page-title-main">Tangential angle</span>

In geometry, the tangential angle of a curve in the Cartesian plane, at a specific point, is the angle between the tangent line to the curve at the given point and the x-axis.

The goat grazing problem is either of two related problems in recreational mathematics involving a tethered goat grazing a circular area: the interior grazing problem and the exterior grazing problem. The former involves grazing the interior of a circular area, and the latter, grazing an exterior of a circular area. For the exterior problem, the constraint that the rope can not enter the circular area dictates that the grazing area forms an involute. If the goat were instead tethered to a post on the edge of a circular path of pavement that did not obstruct the goat, the interior and exterior problem would be complements of a simple circular area.

<span class="mw-page-title-main">Sectrix of Maclaurin</span> Curve traced by the crossing of two lines revolving about poles

In geometry, a sectrix of Maclaurin is defined as the curve swept out by the point of intersection of two lines which are each revolving at constant rates about different points called poles. Equivalently, a sectrix of Maclaurin can be defined as a curve whose equation in biangular coordinates is linear. The name is derived from the trisectrix of Maclaurin, which is a prominent member of the family, and their sectrix property, which means they can be used to divide an angle into a given number of equal parts. There are special cases known as arachnida or araneidans because of their spider-like shape, and Plateau curves after Joseph Plateau who studied them.

<span class="mw-page-title-main">Conical spiral</span>

In mathematics, a conical spiral, also known as a conical helix, is a space curve on a right circular cone, whose floor plan is a plane spiral. If the floor plan is a logarithmic spiral, it is called conchospiral.

References