Affine differential geometry

Last updated

Affine differential geometry is a type of differential geometry which studies invariants of volume-preserving affine transformations. The name affine differential geometry follows from Klein's Erlangen program. The basic difference between affine and Riemannian differential geometry is that affine differential geometry studies manifolds equipped with a volume form rather than a metric.

Contents

Preliminaries

Here we consider the simplest case, i.e. manifolds of codimension one. Let MRn+1 be an n-dimensional manifold, and let ξ be a vector field on Rn+1 transverse to M such that TpRn+1 = TpM ⊕ Span(ξ) for all pM, where ⊕ denotes the direct sum and Span the linear span.

For a smooth manifold, say N, let Ψ(N) denote the module of smooth vector fields over N. Let D : Ψ(Rn+1)×Ψ(Rn+1) → Ψ(Rn+1) be the standard covariant derivative on Rn+1 where D(X, Y) = DXY. We can decompose DXY into a component tangent to M and a transverse component, parallel to ξ. This gives the equation of Gauss: DXY = ∇XY + h(X,Y)ξ, where  : Ψ(M)×Ψ(M) → Ψ(M) is the induced connexion on M and h : Ψ(M)×Ψ(M) → R is a bilinear form. Notice that ∇ and h depend upon the choice of transverse vector field ξ. We consider only those hypersurfaces for which h is non-degenerate. This is a property of the hypersurface M and does not depend upon the choice of transverse vector field ξ. [1] If h is non-degenerate then we say that M is non-degenerate. In the case of curves in the plane, the non-degenerate curves are those without inflexions. In the case of surfaces in 3-space, the non-degenerate surfaces are those without parabolic points.

We may also consider the derivative of ξ in some tangent direction, say X. This quantity, DXξ, can be decomposed into a component tangent to M and a transverse component, parallel to ξ. This gives the Weingarten equation: DXξ = SX + τ(X)ξ. The type-(1,1)-tensor S : Ψ(M) → Ψ(M) is called the affine shape operator, the differential one-form τ : Ψ(M) → R is called the transverse connexion form. Again, both S and τ depend upon the choice of transverse vector field ξ.

The first induced volume form

Let Ω : Ψ(Rn+1)n+1R be a volume form defined on Rn+1. We can induce a volume form on M given by ω : Ψ(M)nR given by ω(X1,...,Xn) := Ω(X1,...,Xn,ξ). This is a natural definition: in Euclidean differential geometry where ξ is the Euclidean unit normal then the standard Euclidean volume spanned by X1,...,Xn is always equal to ω(X1,...,Xn). Notice that ω depends on the choice of transverse vector field ξ.

The second induced volume form

For tangent vectors X1,...,Xn let H := (hi,j) be the n × n matrix given by hi,j := h(Xi,Xj). We define a second volume form on M given by ν : Ψ(M)nR, where ν(X1,...,Xn) := |det(H)|12. Again, this is a natural definition to make. If M = Rn and h is the Euclidean scalar product then ν(X1,...,Xn) is always the standard Euclidean volume spanned by the vectors X1,...,Xn. Since h depends on the choice of transverse vector field ξ it follows that ν does too.

Two natural conditions

We impose two natural conditions. The first is that the induced connexion ∇ and the induced volume form ω be compatible, i.e. ∇ω ≡ 0. This means that Xω = 0 for all X ∈ Ψ(M). In other words, if we parallel transport the vectors X1,...,Xn along some curve in M, with respect to the connexion ∇, then the volume spanned by X1,...,Xn, with respect to the volume form ω, does not change. A direct calculation [1] shows that Xω = τ(X and so Xω = 0 for all X ∈ Ψ(M) if, and only if, τ ≡ 0, i.e. DXξ ∈ Ψ(M) for all X ∈ Ψ(M). This means that the derivative of ξ, in a tangent direction X, with respect to D always yields a, possibly zero, tangent vector to M. The second condition is that the two volume forms ω and ν coincide, i.e. ω ≡ ν.

The conclusion

It can be shown [1] that there is, up to sign, a unique choice of transverse vector field ξ for which the two conditions that ∇ω ≡ 0 and ω ≡ ν are both satisfied. These two special transverse vector fields are called affine normal vector fields, or sometimes called Blaschke normal fields. [2] From its dependence on volume forms for its definition we see that the affine normal vector field is invariant under volume preserving affine transformations. These transformations are given by SL(n+1,R) ⋉ Rn+1, where SL(n+1,R) denotes the special linear group of (n+1) × (n+1) matrices with real entries and determinant 1, and ⋉ denotes the semi-direct product. SL(n+1,R) ⋉ Rn+1 forms a Lie group.

The affine normal line

The affine normal line at a point pM is the line passing through p and parallel to ξ.

Plane curves

Affine normal line for the curve g(t) = (t + 2t ,t ) at t = 0. AffineNormDrDec.jpeg
Affine normal line for the curve γ(t) = (t + 2t ,t ) at t = 0.

The affine normal vector field for a curve in the plane has a nice geometrical interpretation. [2] Let IR be an open interval and let γ : IR2 be a smooth parametrisation of a plane curve. We assume that γ(I) is a non-degenerate curve (in the sense of Nomizu and Sasaki [1] ), i.e. is without inflexion points. Consider a point p = γ(t0) on the plane curve. Since γ(I) is without inflexion points it follows that γ(t0) is not an inflexion point and so the curve will be locally convex, [3] i.e. all of the points γ(t) with t0 ε < t < t0 + ε, for sufficiently small ε, will lie on the same side of the tangent line to γ(I) at γ(t0).

Consider the tangent line to γ(I) at γ(t0), and consider near-by parallel lines on the side of the tangent line containing the piece of curve P := {γ(t) ∈ R2 : t0 ε < t < t0 + ε}. For parallel lines sufficiently close to the tangent line they will intersect P in exactly two points. On each parallel line we mark the midpoint of the line segment joining these two intersection points. For each parallel line we get a midpoint, and so the locus of midpoints traces out a curve starting at p. The limiting tangent line to the locus of midpoints as we approach p is exactly the affine normal line, i.e. the line containing the affine normal vector to γ(I) at γ(t0). Notice that this is an affine invariant construction since parallelism and midpoints are invariant under affine transformations.

Consider the parabola given by the parametrisation γ(t) = (t + 2t2,t2). This has the equation x2 + 4y2 4xyy = 0. The tangent line at γ(0) has the equation y = 0 and so the parallel lines are given by y = k for sufficiently small k ≥ 0. The line y = k intersects the curve at x = 2k ± k. The locus of midpoints is given by {(2k,k) : k ≥ 0}. These form a line segment, and so the limiting tangent line to this line segment as we tend to γ(0) is just the line containing this line segment, i.e. the line x = 2y. In that case the affine normal line to the curve at γ(0) has the equation x = 2y. In fact, direct calculation shows that the affine normal vector at γ(0), namely ξ(0), is given by ξ(0) = 213·(2,1). [4] In the figure the red curve is the curve γ, the black lines are the tangent line and some near-by tangent lines, the black dots are the midpoints on the displayed lines, and the blue line is the locus of midpoints.

Surfaces in 3-space

A similar analogue exists for finding the affine normal line at elliptic points of smooth surfaces in 3-space. This time one takes planes parallel to the tangent plane. These, for planes sufficiently close to the tangent plane, intersect the surface to make convex plane curves. Each convex plane curve has a centre of mass. The locus of centres of mass trace out a curve in 3-space. The limiting tangent line to this locus as one tends to the original surface point is the affine normal line, i.e. the line containing the affine normal vector.

See also

Related Research Articles

In vector calculus and differential geometry the generalized Stokes theorem, also called the Stokes–Cartan theorem, is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus. It is a generalization of Isaac Newton's fundamental theorem of calculus that relates two-dimensional line integrals to three-dimensional surface integrals.

In geometry, a geodesic is commonly a curve representing in some sense the shortest path (arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line".

Riemann curvature tensor Tensor field in Riemannian geometry

In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold. It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is flat, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.

Parallel transport Construct in differential geometry

In geometry, parallel transport is a way of transporting geometrical data along smooth curves in a manifold. If the manifold is equipped with an affine connection, then this connection allows one to transport vectors of the manifold along curves so that they stay parallel with respect to the connection.

In the mathematical field of differential geometry, a Cartan connection is a flexible generalization of the notion of an affine connection. It may also be regarded as a specialization of the general concept of a principal connection, in which the geometry of the principal bundle is tied to the geometry of the base manifold using a solder form. Cartan connections describe the geometry of manifolds modelled on homogeneous spaces.

In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.

In mathematics, and especially differential geometry and gauge theory, a connection is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. A principal G-connection on a principal G-bundle P over a smooth manifold M is a particular type of connection which is compatible with the action of the group G.

Contact geometry

In mathematics, contact geometry is the study of a geometric structure on smooth manifolds given by a hyperplane distribution in the tangent bundle satisfying a condition called 'complete non-integrability'. Equivalently, such a distribution may be given as the kernel of a differential one-form, and the non-integrability condition translates into a maximal non-degeneracy condition on the form. These conditions are opposite to two equivalent conditions for 'complete integrability' of a hyperplane distribution, i.e. that it be tangent to a codimension one foliation on the manifold, whose equivalence is the content of the Frobenius theorem.

Affine connection Construct allowing differentiation of tangent vector fields of manifolds

In differential geometry, an affine connection is a geometric object on a smooth manifold which connects nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space. Connections are among the simplest methods of defining differentiation of the sections of vector bundles.

In differential geometry, the second fundamental form is a quadratic form on the tangent plane of a smooth surface in the three-dimensional Euclidean space, usually denoted by . Together with the first fundamental form, it serves to define extrinsic invariants of the surface, its principal curvatures. More generally, such a quadratic form is defined for a smooth immersed submanifold in a Riemannian manifold.

In mathematics, and specifically differential geometry, a connection form is a manner of organizing the data of a connection using the language of moving frames and differential forms.

Teleparallelism, was an attempt by Albert Einstein to base a unified theory of electromagnetism and gravity on the mathematical structure of distant parallelism, also referred to as absolute or teleparallelism. In this theory, a spacetime is characterized by a curvature-free linear connection in conjunction with a metric tensor field, both defined in terms of a dynamical tetrad field.

Differentiable manifold Manifold upon which it is possible to perform calculus

In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.

In differential geometry and mathematical physics, a spin connection is a connection on a spinor bundle. It is induced, in a canonical manner, from the affine connection. It can also be regarded as the gauge field generated by local Lorentz transformations. In some canonical formulations of general relativity, a spin connection is defined on spatial slices and can also be regarded as the gauge field generated by local rotations.

Torsion tensor Manner of characterizing a twist or screw of a moving frame around a curve

In differential geometry, the notion of torsion is a manner of characterizing a twist or screw of a moving frame around a curve. The torsion of a curve, as it appears in the Frenet–Serret formulas, for instance, quantifies the twist of a curve about its tangent vector as the curve evolves. In the geometry of surfaces, the geodesic torsion describes how a surface twists about a curve on the surface. The companion notion of curvature measures how moving frames "roll" along a curve "without twisting".

In differential geometry, an Ehresmann connection is a version of the notion of a connection, which makes sense on any smooth fiber bundle. In particular, it does not rely on the possible vector bundle structure of the underlying fiber bundle, but nevertheless, linear connections may be viewed as a special case. Another important special case of Ehresmann connections are principal connections on principal bundles, which are required to be equivariant in the principal Lie group action.

In differential geometry, normal coordinates at a point p in a differentiable manifold equipped with a symmetric affine connection are a local coordinate system in a neighborhood of p obtained by applying the exponential map to the tangent space at p. In a normal coordinate system, the Christoffel symbols of the connection vanish at the point p, thus often simplifying local calculations. In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold, one can additionally arrange that the metric tensor is the Kronecker delta at the point p, and that the first partial derivatives of the metric at p vanish.

In the differential geometry of surfaces, a Darboux frame is a natural moving frame constructed on a surface. It is the analog of the Frenet–Serret frame as applied to surface geometry. A Darboux frame exists at any non-umbilic point of a surface embedded in Euclidean space. It is named after French mathematician Jean Gaston Darboux.

In mathematics, the Riemannian connection on a surface or Riemannian 2-manifold refers to several intrinsic geometric structures discovered by Tullio Levi-Civita, Élie Cartan and Hermann Weyl in the early part of the twentieth century: parallel transport, covariant derivative and connection form. These concepts were put in their current form with principal bundles only in the 1950s. The classical nineteenth century approach to the differential geometry of surfaces, due in large part to Carl Friedrich Gauss, has been reworked in this modern framework, which provides the natural setting for the classical theory of the moving frame as well as the Riemannian geometry of higher-dimensional Riemannian manifolds. This account is intended as an introduction to the theory of connections.

Dirac equation in curved spacetime Generalization of the Dirac equation

In mathematical physics, the Dirac equation in curved spacetime is a generalization of the Dirac equation from flat spacetime to curved spacetime, a general Lorentzian manifold.

References

  1. 1 2 3 4 Nomizu, K.; Sasaki, T. (1994), Affine Differential Geometry: Geometry of Affine Immersions , Cambridge University Press, ISBN   0-521-44177-3
  2. 1 2 Su, Buchin (1983), Affine Differential Geometry , Harwood Academic, ISBN   0-677-31060-9
  3. Bruce, J. W.; Giblin, P. J. (1984), Curves and Singularities, Cambridge University Press, ISBN   0-521-42999-4
  4. Davis, D. (2006), Generic Affine Differential Geometry of Curves in Rn, Proc. Royal Soc. Edinburgh, 136A, 11951205.