In differential geometry, normal coordinates at a point p in a differentiable manifold equipped with a symmetric affine connection are a local coordinate system in a neighborhood of p obtained by applying the exponential map to the tangent space at p. In a normal coordinate system, the Christoffel symbols of the connection vanish at the point p, thus often simplifying local calculations. In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold, one can additionally arrange that the metric tensor is the Kronecker delta at the point p, and that the first partial derivatives of the metric at p vanish.
A basic result of differential geometry states that normal coordinates at a point always exist on a manifold with a symmetric affine connection. In such coordinates the covariant derivative reduces to a partial derivative (at p only), and the geodesics through p are locally linear functions of t (the affine parameter). This idea was implemented in a fundamental way by Albert Einstein in the general theory of relativity: the equivalence principle uses normal coordinates via inertial frames. Normal coordinates always exist for the Levi-Civita connection of a Riemannian or Pseudo-Riemannian manifold. By contrast, in general there is no way to define normal coordinates for Finsler manifolds in a way that the exponential map are twice-differentiable ( Busemann 1955 ).
Geodesic normal coordinates are local coordinates on a manifold with an affine connection defined by means of the exponential map
with an open neighborhood of 0 in , and an isomorphism
given by any basis of the tangent space at the fixed basepoint . If the additional structure of a Riemannian metric is imposed, then the basis defined by E may be required in addition to be orthonormal, and the resulting coordinate system is then known as a Riemannian normal coordinate system.
Normal coordinates exist on a normal neighborhood of a point p in M. A normal neighborhoodU is an open subset of M such that there is a proper neighborhood V of the origin in the tangent space TpM, and expp acts as a diffeomorphism between U and V. On a normal neighborhood U of p in M, the chart is given by:
The isomorphism E, and therefore the chart, is in no way unique. A convex normal neighborhoodU is a normal neighborhood of every p in U. The existence of these sort of open neighborhoods (they form a topological basis) has been established by J.H.C. Whitehead for symmetric affine connections.
The properties of normal coordinates often simplify computations. In the following, assume that is a normal neighborhood centered at a point in and are normal coordinates on .
In the neighbourhood of any point equipped with a locally orthonormal coordinate system in which and the Riemann tensor at takes the value we can adjust the coordinates so that the components of the metric tensor away from become
The corresponding Levi-Civita connection Christoffel symbols are
Similarly we can construct local coframes in which
and the spin-connection coefficients take the values
On a Riemannian manifold, a normal coordinate system at p facilitates the introduction of a system of spherical coordinates, known as polar coordinates. These are the coordinates on M obtained by introducing the standard spherical coordinate system on the Euclidean space TpM. That is, one introduces on TpM the standard spherical coordinate system (r,φ) where r ≥ 0 is the radial parameter and φ = (φ1,...,φn−1) is a parameterization of the (n−1)-sphere. Composition of (r,φ) with the inverse of the exponential map at p is a polar coordinate system.
Polar coordinates provide a number of fundamental tools in Riemannian geometry. The radial coordinate is the most significant: geometrically it represents the geodesic distance to p of nearby points. Gauss's lemma asserts that the gradient of r is simply the partial derivative . That is,
for any smooth function ƒ. As a result, the metric in polar coordinates assumes a block diagonal form
In physics, Kaluza–Klein theory is a classical unified field theory of gravitation and electromagnetism built around the idea of a fifth dimension beyond the common 4D of space and time and considered an important precursor to string theory. In their setup, the vacuum has the usual 3 dimensions of space and one dimension of time but with another microscopic extra spatial dimension in the shape of a tiny circle. Gunnar Nordström had an earlier, similar idea. But in that case, a fifth component was added to the electromagnetic vector potential, representing the Newtonian gravitational potential, and writing the Maxwell equations in five dimensions.
In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold. It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is flat, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.
In special relativity, a four-vector is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts.
In physics, Minkowski space is the main mathematical description of spacetime in the absence of gravitation. It combines inertial space and time manifolds into a four-dimensional model.
Linear elasticity is a mathematical model of how solid objects deform and become internally stressed by prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.
In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.
Bosonic string theory is the original version of string theory, developed in the late 1960s and named after Satyendra Nath Bose. It is so called because it contains only bosons in the spectrum.
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.
In mathematics, a Killing vector field, named after Wilhelm Killing, is a vector field on a Riemannian manifold that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object.
In mathematics and theoretical physics, the induced metric is the metric tensor defined on a submanifold that is induced from the metric tensor on a manifold into which the submanifold is embedded, through the pullback. It may be determined using the following formula, which is the component form of the pullback operation:
In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic.
In general relativity, the metric tensor is the fundamental object of study. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.
A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.
In geometry, the elliptic coordinate system is a two-dimensional orthogonal coordinate system in which the coordinate lines are confocal ellipses and hyperbolae. The two foci and are generally taken to be fixed at and , respectively, on the -axis of the Cartesian coordinate system.
Toroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional bipolar coordinate system about the axis that separates its two foci. Thus, the two foci and in bipolar coordinates become a ring of radius in the plane of the toroidal coordinate system; the -axis is the axis of rotation. The focal ring is also known as the reference circle.
Oblate spheroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional elliptic coordinate system about the non-focal axis of the ellipse, i.e., the symmetry axis that separates the foci. Thus, the two foci are transformed into a ring of radius in the x-y plane. Oblate spheroidal coordinates can also be considered as a limiting case of ellipsoidal coordinates in which the two largest semi-axes are equal in length.
The tetrad formalism is an approach to general relativity that generalizes the choice of basis for the tangent bundle from a coordinate basis to the less restrictive choice of a local basis, i.e. a locally defined set of four linearly independent vector fields called a tetrad or vierbein. It is a special case of the more general idea of a vielbein formalism, which is set in (pseudo-)Riemannian geometry. This article as currently written makes frequent mention of general relativity; however, almost everything it says is equally applicable to (pseudo-)Riemannian manifolds in general, and even to spin manifolds. Most statements hold simply by substituting arbitrary for . In German, "vier" translates to "four", and "viel" to "many".
In theoretical physics, relativistic Lagrangian mechanics is Lagrangian mechanics applied in the context of special relativity and general relativity.
Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.
In differential geometry, Santaló's formula describes how to integrate a function on the unit sphere bundle of a Riemannian manifold by first integrating along every geodesic separately and then over the space of all geodesics. It is a standard tool in integral geometry and has applications in isoperimetric and rigidity results. The formula is named after Luis Santaló, who first proved the result in 1952.