Killing vector field

Last updated

In mathematics, a Killing vector field (often called a Killing field), named after Wilhelm Killing, is a vector field on a Riemannian manifold (or pseudo-Riemannian manifold) that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object.

Contents

Definition

Specifically, a vector field is a Killing field if the Lie derivative with respect to of the metric vanishes: [1]

In terms of the Levi-Civita connection, this is

for all vectors and . In local coordinates, this amounts to the Killing equation [2]

This condition is expressed in covariant form. Therefore, it is sufficient to establish it in a preferred coordinate system in order to have it hold in all coordinate systems.

Examples

Killing field on the circle

The Killing field on the circle and flow along the Killing field. Killing field on the circle.gif
The Killing field on the circle and flow along the Killing field.

The vector field on a circle that points counterclockwise and has the same length at each point is a Killing vector field, since moving each point on the circle along this vector field simply rotates the circle.

Killing fields on the hyperbolic plane

Killing field on the upper-half plane model, on a semi-circular selection of points. This Killing vector field generates the special conformal transformation. The colour indicates the magnitude of the vector field at that point. Special conformal transformation generator.png
Killing field on the upper-half plane model, on a semi-circular selection of points. This Killing vector field generates the special conformal transformation. The colour indicates the magnitude of the vector field at that point.

A toy example for a Killing vector field is on the upper half-plane equipped with the Poincaré metric . The pair is typically called the hyperbolic plane and has Killing vector field (using standard coordinates). This should be intuitively clear since the covariant derivative transports the metric along an integral curve generated by the vector field (whose image is parallel to the x-axis).

Furthermore, the metric is independent of from which we can immediately conclude that is a Killing field using one of the results below in this article.

The isometry group of the upper half-plane model (or rather, the component connected to the identity) is (see Poincaré half-plane model), and the other two Killing fields may be derived from considering the action of the generators of on the upper half-plane. The other two generating Killing fields are dilatation and the special conformal transformation .

Killing fields on a 2-sphere

Killing field on the sphere. This Killing vector field generates rotation around the z-axis. The colour indicates the height of the base point of each vector in the field. Enlarge for animation of flow along Killing field. Sphere killing field z-rotation.gif
Killing field on the sphere. This Killing vector field generates rotation around the z-axis. The colour indicates the height of the base point of each vector in the field. Enlarge for animation of flow along Killing field.

The Killing fields of the two-sphere , or more generally the -sphere should be obvious from ordinary intuition: spheres, having rotational symmetry, should possess Killing fields which generate rotations about any axis. That is, we expect to have symmetry under the action of the 3D rotation group SO(3). That is, by using the a priori knowledge that spheres can be embedded in Euclidean space, it is immediately possible to guess the form of the Killing fields.

The conventional chart for the 2-sphere embedded in in Cartesian coordinates is given by

so that parametrises the height, and parametrises rotation about the -axis.

The pullback of the standard Cartesian metric gives the standard metric on the sphere,

.

Intuitively, a rotation about any axis should be an isometry. In this chart, the vector field which generates rotations about the -axis:

In these coordinates, the metric components are all independent of , which shows that is a Killing field.

The vector field

is not a Killing field; the coordinate explicitly appears in the metric. The flow generated by goes from north to south; points at the north pole spread apart, those at the south come together. Any transformation that moves points closer or farther apart cannot be an isometry; therefore, the generator of such motion cannot be a Killing field.

The generator is recognized as a rotation about the -axis

A second generator, for rotations about the -axis, is

The third generator, for rotations about the -axis, is

The algebra given by linear combinations of these three generators closes, and obeys the relations

This is the Lie algebra .

Expressing and in terms of spherical coordinates gives

and

That these three vector fields are actually Killing fields can be determined in two different ways. One is by explicit computation: just plug in explicit expressions for and chug to show that This is a worth-while exercise. Alternately, one can recognize and are the generators of isometries in Euclidean space, and since the metric on the sphere is inherited from metric in Eucliden space, the isometries are inherited as well.

These three Killing fields form a complete set of generators for the algebra. They are not unique: any linear combination of these three fields is still a Killing field.

There are several subtle points to note about this example.

Killing fields in Minkowski space

The Killing fields of Minkowski space are the 3 space translations, time translation, three generators of rotations (the little group) and the three generators of boosts. These are

The boosts and rotations generate the Lorentz group. Together with space-time translations, this forms the Lie algebra for the Poincaré group.

Killing fields in flat space

Here we derive the Killing fields for general flat space. From Killing's equation and the Ricci identity for a covector ,

(using abstract index notation) where is the Riemann curvature tensor, the following identity may be proven for a Killing field :

When the base manifold is flat space, that is, Euclidean space or pseudo-Euclidean space (as for Minkowski space), we can choose global flat coordinates such that in these coordinates, the Levi-Civita connection and hence Riemann curvature vanishes everywhere, giving

Integrating and imposing the Killing equation allows us to write the general solution to as

where is antisymmetric. By taking appropriate values of and , we get a basis for the generalised Poincaré algebra of isometries of flat space:

These generate pseudo-rotations (rotations and boosts) and translations respectively. Intuitively these preserve the (pseudo)-metric at each point.

For (pseudo-)Euclidean space of total dimension, in total there are generators, making flat space maximally symmetric. This number is generic for maximally symmetric spaces. Maximally symmetric spaces can be considered as sub-manifolds of flat space, arising as surfaces of constant proper distance

which have O(p, q) symmetry. If the submanifold has dimension , this group of symmetries has the expected dimension (as a Lie group).

Heuristically, we can derive the dimension of the Killing field algebra. Treating Killing's equation together with the identity as a system of second order differential equations for , we can determine the value of at any point given initial data at a point . The initial data specifies and , but Killing's equation imposes that the covariant derivative is antisymmetric. In total this is independent values of initial data.

For concrete examples, see below for examples of flat space (Minkowski space) and maximally symmetric spaces (sphere, hyperbolic space).

Killing fields in general relativity

Killing fields are used to discuss isometries in general relativity (in which the geometry of spacetime as distorted by gravitational fields is viewed as a 4-dimensional pseudo-Riemannian manifold). In a static configuration, in which nothing changes with time, the time vector will be a Killing vector, and thus the Killing field will point in the direction of forward motion in time. For example, the Schwarzschild metric has four Killing fields: the metric is independent of , hence is a time-like Killing field. The other three are the three generators of rotations discussed above. The Kerr metric for a rotating black hole has only two Killing fields: the time-like field, and a field generating rotations about the axis of rotation of the black hole.

de Sitter space and anti-de Sitter space are maximally symmetric spaces, with the -dimensional versions of each possessing Killing fields.

Killing field of a constant coordinate

If the metric coefficients in some coordinate basis are independent of one of the coordinates , then is a Killing vector, where is the Kronecker delta. [3]

To prove this, let us assume . Then and

Now let us look at the Killing condition

and from . The Killing condition becomes

that is , which is true.

Conversely, if the metric admits a Killing field , then one can construct coordinates for which . These coordinates are constructed by taking a hypersurface such that is nowhere tangent to . Take coordinates on , then define local coordinates where denotes the parameter along the integral curve of based at on . In these coordinates, the Lie derivative reduces to the coordinate derivative, that is,

and by the definition of the Killing field the left-hand side vanishes.

Properties

A Killing field is determined uniquely by a vector at some point and its gradient (i.e. all covariant derivatives of the field at the point).

The Lie bracket of two Killing fields is still a Killing field. The Killing fields on a manifold M thus form a Lie subalgebra of vector fields on M. This is the Lie algebra of the isometry group of the manifold if M is complete. A Riemannian manifold with a transitive group of isometries is a homogeneous space.

For compact manifolds

The covariant divergence of every Killing vector field vanishes.

If is a Killing vector field and is a harmonic vector field, then is a harmonic function.

If is a Killing vector field and is a harmonic p-form, then

Geodesics

Each Killing vector corresponds to a quantity which is conserved along geodesics. This conserved quantity is the metric product between the Killing vector and the geodesic tangent vector. Along an affinely parametrized geodesic with tangent vector then given the Killing vector , the quantity is conserved:

This aids in analytically studying motions in a spacetime with symmetries. [4]

Stress-energy tensor

Given a conserved, symmetric tensor , that is, one satisfying and , which are properties typical of a stress-energy tensor, and a Killing vector , we can construct the conserved quantity satisfying

Cartan decomposition

As noted above, the Lie bracket of two Killing fields is still a Killing field. The Killing fields on a manifold thus form a Lie subalgebra of all vector fields on Selecting a point the algebra can be decomposed into two parts:

and

where is the covariant derivative. These two parts intersect trivially but do not in general split . For instance, if is a Riemannian homogeneous space, we have if and only if is a Riemannian symmetric space. [5]

Intuitively, the isometries of locally define a submanifold of the total space, and the Killing fields show how to "slide along" that submanifold. They span the tangent space of that submanifold. The tangent space should have the same dimension as the isometries acting effectively at that point. That is, one expects Yet, in general, the number of Killing fields is larger than the dimension of that tangent space. How can this be? The answer is that the "extra" Killing fields are redundant. Taken all together, the fields provide an over-complete basis for the tangent space at any particular selected point; linear combinations can be made to vanish at that particular point. This was seen in the example of the Killing fields on a 2-sphere: there are 3 Killing fields; at any given point, two span the tangent space at that point, and the third one is a linear combination of the other two. Picking any two defines the remaining degenerate linear combinations define an orthogonal space

Cartan involution

The Cartan involution is defined as the mirroring or reversal of the direction of a geodesic. Its differential flips the direction of the tangents to a geodesic. It is a linear operator of norm one; it has two invariant subspaces, of eigenvalue +1 and −1. These two subspaces correspond to and respectively.

This can be made more precise. Fixing a point consider a geodesic passing through , with The involution is defined as

This map is an involution, in that When restricted to geodesics along the Killing fields, it is also clearly an isometry. It is uniquely defined.

Let be the group of isometries generated by the Killing fields. The function defined by

is a homomorphism of . Its infinitesimal is

The Cartan involution is a Lie algebra homomorphism, in that

for all The subspace has odd parity under the Cartan involution, while has even parity. That is, denoting the Cartan involution at point as one has

and

where is the identity map. From this, it follows that the subspace is a Lie subalgebra of , in that As these are even and odd parity subspaces, the Lie brackets split, so that and

The above decomposition holds at all points for a symmetric space ; proofs can be found in Jost. [6] They also hold in more general settings, but not necessarily at all points of the manifold.[ citation needed ]

For the special case of a symmetric space, one explicitly has that that is, the Killing fields span the entire tangent space of a symmetric space. Equivalently, the curvature tensor is covariantly constant on locally symmetric spaces, and so these are locally parallelizable; this is the Cartan–Ambrose–Hicks theorem.

Generalizations

See also

Related Research Articles

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold. It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is flat, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.

The Klein–Gordon equation is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. It is a differential equation version of the relativistic energy–momentum relation .

<span class="mw-page-title-main">Lorentz group</span> Lie group of Lorentz transformations

In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz.

Linear elasticity is a mathematical model as to how solid objects deform and become internally stressed by prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

The Kerr–Newman metric describes the spacetime geometry around a mass which is electrically charged and rotating. It is a vacuum solution which generalizes the Kerr metric by additionally taking into account the energy of an electromagnetic field, making it the most general asymptotically flat and stationary solution of the Einstein–Maxwell equations in general relativity. As an electrovacuum solution, it only includes those charges associated with the magnetic field; it does not include any free electric charges.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are utilized. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

In physics, spherically symmetric spacetimes are commonly used to obtain analytic and numerical solutions to Einstein's field equations in the presence of radially moving matter or energy. Because spherically symmetric spacetimes are by definition irrotational, they are not realistic models of black holes in nature. However, their metrics are considerably simpler than those of rotating spacetimes, making them much easier to analyze.

In general relativity, the metric tensor is the fundamental object of study. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.

A frame field in general relativity is a set of four pointwise-orthonormal vector fields, one timelike and three spacelike, defined on a Lorentzian manifold that is physically interpreted as a model of spacetime. The timelike unit vector field is often denoted by and the three spacelike unit vector fields by . All tensorial quantities defined on the manifold can be expressed using the frame field and its dual coframe field.

In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.

In conformal geometry, a conformal Killing vector field on a manifold of dimension n with (pseudo) Riemannian metric , is a vector field whose flow defines conformal transformations, that is, preserve up to scale and preserve the conformal structure. Several equivalent formulations, called the conformal Killing equation, exist in terms of the Lie derivative of the flow e.g. for some function on the manifold. For there are a finite number of solutions, specifying the conformal symmetry of that space, but in two dimensions, there is an infinity of solutions. The name Killing refers to Wilhelm Killing, who first investigated Killing vector fields.

In physics, a sigma model is a field theory that describes the field as a point particle confined to move on a fixed manifold. This manifold can be taken to be any Riemannian manifold, although it is most commonly taken to be either a Lie group or a symmetric space. The model may or may not be quantized. An example of the non-quantized version is the Skyrme model; it cannot be quantized due to non-linearities of power greater than 4. In general, sigma models admit (classical) topological soliton solutions, for example, the skyrmion for the Skyrme model. When the sigma field is coupled to a gauge field, the resulting model is described by Ginzburg–Landau theory. This article is primarily devoted to the classical field theory of the sigma model; the corresponding quantized theory is presented in the article titled "non-linear sigma model".

In differential geometry and mathematical physics, a spin connection is a connection on a spinor bundle. It is induced, in a canonical manner, from the affine connection. It can also be regarded as the gauge field generated by local Lorentz transformations. In some canonical formulations of general relativity, a spin connection is defined on spatial slices and can also be regarded as the gauge field generated by local rotations.

<span class="mw-page-title-main">Maxwell's equations in curved spacetime</span> Electromagnetism in general relativity

In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.

The tetrad formalism is an approach to general relativity that generalizes the choice of basis for the tangent bundle from a coordinate basis to the less restrictive choice of a local basis, i.e. a locally defined set of four linearly independent vector fields called a tetrad or vierbein. It is a special case of the more general idea of a vielbein formalism, which is set in (pseudo-)Riemannian geometry. This article as currently written makes frequent mention of general relativity; however, almost everything it says is equally applicable to (pseudo-)Riemannian manifolds in general, and even to spin manifolds. Most statements hold simply by substituting arbitrary for . In German, "vier" translates to "four", and "viel" to "many".

The Carter constant is a conserved quantity for motion around black holes in the general relativistic formulation of gravity. Its SI base units are kg2⋅m4⋅s−2. Carter's constant was derived for a spinning, charged black hole by Australian theoretical physicist Brandon Carter in 1968. Carter's constant along with the energy , axial angular momentum , and particle rest mass provide the four conserved quantities necessary to uniquely determine all orbits in the Kerr–Newman spacetime.

<span class="mw-page-title-main">Dirac equation in curved spacetime</span> Generalization of the Dirac equation

In mathematical physics, the Dirac equation in curved spacetime is a generalization of the Dirac equation from flat spacetime to curved spacetime, a general Lorentzian manifold.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

References

  1. Jost, Jurgen (2002). Riemannian Geometry and Geometric Analysis. Berlin: Springer-Verlag. ISBN   3-540-42627-2.
  2. Adler, Ronald; Bazin, Maurice; Schiffer, Menahem (1975). Introduction to General Relativity (Second ed.). New York: McGraw-Hill. ISBN   0-07-000423-4.. See chapters 3, 9.
  3. Misner, Thorne, Wheeler (1973). Gravitation. W H Freeman and Company. ISBN   0-7167-0344-0.{{cite book}}: CS1 maint: multiple names: authors list (link)
  4. Carroll, Sean (2004). Spacetime and Geometry: An Introduction to General Relativity . Addison Wesley. pp.  133–139. ISBN   9780805387322.
  5. Olmos, Carlos; Reggiani, Silvio; Tamaru, Hiroshi (2014). The index of symmetry of compact naturally reductive spaces. Math. Z. 277, 611–628. DOI 10.1007/s00209-013-1268-0
  6. Jurgen Jost, (2002) "Riemmanian Geometry and Geometric Analysis" (Third edition) Springer. (See section 5.2 pages 241-251.)
  7. Carroll, Sean (2004). Spacetime and Geometry: An Introduction to General Relativity . Addison Wesley. pp.  263, 344. ISBN   9780805387322.
  8. Choquet-Bruhat, Yvonne; DeWitt-Morette, Cécile (1977), Analysis, Manifolds and Physics , Amsterdam: Elsevier, ISBN   978-0-7204-0494-4